

dsPIC Cuckoo Clock

By
Moe Wheatley

MoeTronix

www.moetronix.com

Sept. 15, 2004

Ver. 1.0 2

Table of Contents
1 Introduction .. 3

1.1 The Idea.. 3

1.2 Hardware .. 3

1.2.1 Block Diagram ... 4

1.3 Software.. 4

1.3.1 Basic Modules ... 4

2 User Operation Guide .. 5

2.1 Program Loading .. 5

2.2 Radio Connection ... 5

2.3 Initial Setup ... 5

2.4 Menus ... 6

2.4.1 Main... 6

2.4.2 Setup ... 6

2.4.3 Status... 6

2.4.4 Manual Time Set.. 7

2.4.5 Raw Signal View.. 7

2.4.6 Seconds Sync View ... 7

2.4.7 Data View .. 7

3 WWV Signal Description .. 7

4 WWV/WWVH Demodulator.. 9

4.1 First Decimation Stage.. 10

4.2 Data Decimation and Detection Stages .. 10

4.3 Seconds Sync Recovery... 11

4.4 Minute Sync Recovery .. 13

4.5 Data bit Recovery ... 14

5 Time Decoder... 14

6 FM Synthesizer .. 15

7 Summary.. 20

7.1 Processor Resources.. 20

7.2 Clock Performance Issues .. 20

7.2.1 WWV/WWVH Demodulation.. 20

7.2.2 Time Keeping... 20

7.2.3 Sound Generation.. 21

7.3 Toolset Issues... 21

Ver. 1.0 3

1 Introduction

1.1 The Idea

Since the first cave dwellers noticed the shadow of a rock moving as the day
progressed, we have been developing new ways to measure and display the passing of
time. http://physics.nist.gov/GenInt/Time/time.html
We now measure the oscillations of cesium atoms to keep track of our passage through
the 4th dimension.

The introduction of the dsPIC seemed as good a reason as any to develop yet another
clock. To make it more interesting it was decided to have the primary method to set the
clock by tuning onto one of the NIST WWV or WWVH shortwave broadcasts and routing
the signal to the clock to decode the time information and set itself to the correct time.

As a secondary task, the dsPIC was challenged to create various "clock" sounds such
as bells, cuckoos, and gongs.

This project has its roots in an old project inspired by Dr. David Mills
http://www.eecis.udel.edu/~mills/ who developed a clock using DSP techniques to
extract the time information from the WWV signals.

It was also desired to evaluate the MPLAB C30 compiler and discover how well it
performed so all but a couple small DSP routines were written in 'C'.

1.2 Hardware

The hardware chosen for this project was the dsPICDEM 1.1 evaluation board from
Microchip. It provides a standalone platform for the clock with no hardware
modifications or additions except for an external shortwave radio capable of receiving
the WWV or WWVH signals on 2.5, 5.0, 10.0, 15.0 or 20.0MHz.

The SW radio audio is fed into the CODEC audio MIC input jack J16. The chimes and
gong sounds are output on the CODEC audio SPKR OUT jack J17.

Two of the three available pots, RP1 and 3 are used to set the radio input audio level
and sound out audio levels. They are hooked to the dsPIC 12bit A/D converter and
read periodically and the values used to adjust the CODEC parameters.

The LCD and 4 key switches SW1-4 are used to implement a simple menu and display
system.

Four LEDs, LED1-4 provide visual status of the clock synchronization and audio level
clipping.

DsPIC resources used are a couple timers, the 12 bit A/D converter, the DCI module,
the SPI module, internal EEROM, and some I/O ports.

Ver. 1.0 4

1.2.1 Block Diagram

Power

Supply

32x122

LCD

LCD Controller

dsPIC30F6014

8KRAM

48KWords

ProgramFLASH

Si3000

Codec

3 GP

Pots

4 LEDs

SW WWV Radio

Audio In

Clock Sound Output

SPI

DCI

12Bit A/D

GPIO

1.3 Software

The software is written primarily in C using the Microchip MPLAB C30 Compiler. Debug
and program development was accomplished using the MPLAB IDE and the ICD-2
programming/debug module along with an oscilloscope.

1.3.1 Basic Modules

There are nine software modules that are linked together. The following is a list of the
modules and their basic functions:
Main.c Program Entry and main execution loop
Timers.c Timer setup, IRQ service, and EEROM utilities
AtoD.c 12 bit A/D setup and utilities
Codec.c Si3000 Codec setup and IRQ service routine
LCD.c LCD controller setup and interface routines
Menu.c Menu system implementation
Gettime.c Decodes time information from raw bit data
ProcSignal.c DSP section which demodulates the WWV or WWVH signals
SoundGen.c Creates sound samples for all the various clock sounds
AsmUtils.s A couple of assembler code helper functions for the DSP tasks

The following include files are also used:
Timers.h Module Includes
AtoD.h Module Includes
Codec.h Module Includes
LCD.h Module Includes
Menu.h Module Includes
Gettime.h Module Includes
ProcSignal.h Module Includes
SoundGen.h Module Includes
Common.h common program definitions
Tables.h DSP filter tables
SoundTable.h FM synthesis sound tables
Cuckoo.* Various project files for MPLAB

Ver. 1.0 5

2 User Operation Guide

LCD Display

RP1 RP3RP2

J16 J17

MENU

SCROLL

MENU

ITEM

SCROLL

DEC INC

Min

Sync

Sec

Sync

Ovrld

Sound

Active

In

Level

Out

Level

Not

Used
WWV

audio

IN

Clock

Sound

Out

2.1 Program Loading

First the MPLAB IDE, the MPLAB C30 Compiler, and ICD-2 software must be installed
and the ICD-2 attached to the PC and to the dsPICDEM 1.1 evaluation board as
described in the documentation for the tool sets.

Create a folder and place all the Cuckoo project files into it.

From within the MPLAB IDE, load the project file Cuckoo.mcp into the IDE workspace.
If the C30 Compiler is setup then the project can be compiled and the demo board
programmed with the compiled code in either debug mode or just use the programming
mode.

2.2 Radio Connection

An AM shortwave receiver is required to pick up the WWV or WWVH signals. Hopefully
it will have an external headphone or speaker jack that can be used to connect to the
Demo Board's Mic input jack.
Tune the receiver to 2.5, 5.0, 10.0, 15.0, or 20.0 MHz whichever has the best signal. An
outdoor antenna is preferred but a wire strung around the room may suffice if the signal
is reasonably strong.

An alternative is to use an MP3 file that is available from
www.moetronix.com/files/wwv.mp3

This is a 5 minute recording of WWV that can be played back on your computer's
soundcard into the demo board in order to demonstrate the program.

2.3 Initial Setup

Once the program is loaded and running, a splash screen should appear followed by
the main menu screen displaying the time and a pendulum moving at the bottom of the
screen.

Ver. 1.0 6

If headphones or a speaker is connected to the SPKR jack of the demo board, some
initial clock gongs will be heard. Adjust RP3 for the output volume.

With the radio connected and receiving WWV, adjust RP1 (and/or the radio volume)
until LED1 just flickers indicating overload, then back it off till it just stops blinking. (A
better way is to punch SW1 three times till the raw signal view is shown and adjust for a
signal that is not touching the top or bottom of the screen)

2.4 Menus

There are seven menus that can be reached by pressing the Menu Scroll button(SW1)

2.4.1 Main

The main menu displays the time as 24 hour UTC and also as 12 hour local time. A
cursor pendulum bounces back and forth at the bottom of the screen.

2.4.2 Setup

The setup menu allows user setup data to be entered.
LOCAL HR OFFSET= -04 (-12 to +12 hours)

STATION = WWV or WWVH

HOUR CHIME = CUCKOO or GONG

TIC-TOCK = ON or OFF

A blinking cursor appears near the parameter that can be changed. Pressing the Menu
Item Scroll Key(SW2) moves the cursor to select each menu item that can be changed.

Pressing the DEC or INC keys (SW3,SW4) changes the selected menu item.

All the setup items as well as the current selected menu is saved in non-volatile
EEROM onboard the dsPIC.

Note: the hourly gongs will chime if the Local Hr Offset is changed even though it is not
at the top of the hour. This is a quick and dirty way to force an hourly chime to adjust
the volume or just to play with the chimes.

2.4.3 Status

The status menu displays some inner program status for following the synchronization
and data integration processes.

SYNC Y or N MIN QUAL 00

MIN ENERGY 00

HR ENERGY 00

YR ENERGY 00

The Sync parameter indicates that the seconds position is located and synchronized.
The Minute Quality indicates how many minute sync pulses have been received
correctly.
The Minute, Hour, and Year Energies indicate the number of correct bits that have been
integrated over the last several minutes. The larger the energy, the more likely the time
and data are correct. Above a certain threshold or if sync is lost, the energies are reset
and a new capture is started.

Ver. 1.0 7

2.4.4 Manual Time Set

This menu allows the time to be set manually in case the WWV signal is not available.
The year, UTC hour and minute can be changed. Whenever the minute value is
changed, the seconds count is forced to zero so one can manually sync to within a few
seconds.
 MANUAL TIME SET

Year = 04

UTC Hour = 21

Minute = 59

A blinking cursor appears near the parameter that can be changed. Pressing the Menu
Item Scroll Key(SW2) moves the cursor to select each menu item that can be changed.

Pressing the DEC or INC keys (SW3,SW4) changes the selected menu item.

These time values are also saved in non-volatile EEROM onboard the dsPIC. Only the
values last changed in this menu are saved, not the current time.

2.4.5 Raw Signal View

The raw signal view displays the incoming audio signal on an oscilloscope type display.
This is useful for adjusting the radio signal level so that it does not clip or that it is strong
enough.

2.4.6 Seconds Sync View

The seconds sync view displays the bin energies of the seconds sync buffer. This
buffer integrates the 1 second "Tick" pulse energy in a 150 position buffer where each
bin is a 6.6666mS time slot of a full second. The peak value of this buffer represents
the seconds sync position and is displayed at the center of the screen. It is a measure
of the quality of the incoming WWV signal. If the peak is small or moving around, the
signal is not sufficient to decode.

2.4.7 Data View

The Data View screen displays the current data pulse graphically. The screen width is
one second. A zero data bit is a short bit taking up the first 1/5 of the screen. A one bit
is about 3/4 of the screen long. This view also indicates the signal quality. If a bit
cannot be discerned visually, chances are the program will not decode it either.

3 WWV Signal Description

The best source for WWV signal format is to visit their web page. There is also a lot of
historical as well as information on their stations and other time services.

http://www.boulder.nist.gov/timefreq/index.html

The WWV signal uses double sideband AM where four types of information is
modulated onto the carrier. Voice information is modulated at 75%, the steady tones
are at 50%, the second’s “tick” sound is 100%, and the BCD time data is 25%. For this
project only the 1000/1200Hz seconds/minute identifier tones and the 100Hz BCD time
data are utilized.

Ver. 1.0 8

 Time data is sent using pulses of 100Hz tones at a data rate of 1 Hz in BCD format.

Various tone sequences are broadcast by WWV. The start of each hour is identified
with a .8 second burst of 1500Hz tone. The start of each minute is identified with a .8
second burst of 1000Hz tone. The start of each second is identified with 5 cycles of
1000Hz tone. (Except for the 29th and 59th second) WWVH uses 1200Hz tones
instead of 1000Hz tones, otherwise the timing is all the same.

 Time data is sent using pulses of 100Hz tones at a data rate of 1 Hz in BCD format.

The following shows the data bit definitions and locations within each minute:

Ver. 1.0 9

4 WWV/WWVH Demodulator

CODEC

A/D

1800Hz

LPF ↓↓↓↓

1/1.2KHz

BPF

110Hz

LPF ↓↓↓↓

2

4

abs()
450Hz

LPF ↓↓↓↓

4

Seconds Sync Buffer

0

1

2

149

°
°
°

Peak

Find

Seconds

Sync

Position

Minute

Sync

Find

Minute

Sync

Position

144 Sample

Buffer

3600 SPS

72 sample

Buffer

900 SPS

18 sample

Buffer

110Hz

LPF ↓↓↓↓

2

450 SPS

9 sample

Buffer

100Hz

BPF
abs()

LP

IIR

RawDataBuffer

WWV/WWVH Signal Processing Block Diagram

WWV

or

WWVH

Audio Input

Sampled at

7200 SPS

Ver. 1.0 10

4.1 First Decimation Stage

The Si3000 CODEC provides 15 bit samples of input audio data at a rate of 7200 SPS.
The codec.c module contains the service routines for the codec. A ping-pong buffer
scheme allows one buffer to be processed while the other one is being filled. Also a
state machine is implemented to allow the codec parameters to be changed on the fly
without disturbing the incoming and outgoing data samples. One must change the bits
per frame of the DCI to insert the extra setup frame in between the data sample frames.

Since the highest frequency component of the WWV signal is <1500Hz, the data stream
is first decimated by two. This is accomplished using the DSP library decimate routine
and supplying it with anti-aliasing LP filter coefficients that provide a 60dB cutoff at
1800Hz. Below is a dsPIC Filter Designer screen shot of the filter magnitude.

The decimated data stream splits into two paths, one to demodulate the 1000 (or
1200,WWVH) Hz sync tones and one to demodulate the 100Hz time data bit tones.

4.2 Data Decimation and Detection Stages

The data path consists of two additional decimation stages to reduce the sample rate
down to 450Hz. A decimate by 4 followed by a decimate by 2 stage accomplishes this
task. This 450 SPS data stream is then band pass filtered at 100Hz to isolate the
100Hz data signal. It is then AM detected using an absolute value function then low
pass filtered again using a simple IIR filter.

Ver. 1.0 11

The low pass filter is a simple IIR stage with one delay element. It has the same
response as an analog RC filter. This type filter is useful for obtaining a very low cutoff
frequency with little processor overhead. It can be implemented with one line of code.

y = k1*y + k2*x;

The filter H(z) equation is:

 Hs()z
.k2 z

z k1

The down side of this filter is that it has poor frequency roll off response but is fine for
implementing long running averages.

The Cuckoo clock implements this filter as an array of IIR filters with a small assembly
language utility routine in AsmUtils.s called

void CalcLpIir(unsigned int Size, fractional* pIn, fractional* pLPVal, unsigned int LPK).
LPK is the filter coefficient where:

k1 = 1.0 - LPK and k2 = LPK

This probably could be done in 'C' but it was desired to put the MAC and MPY
instructions to good use.

4.3 Seconds Sync Recovery

The 1000Hz (1200Hz for WWVH) signal is obtained by band-pass filtering the 3600SPS
data stream with an 81 tap BP FIR filter. Since the pulse width of the seconds sync
pulse is 5mSec, the filter band width needs to be roughly 1/5mS or 200Hz. Below is the
magnitude response of the filter.

Ver. 1.0 12

Inphase Filter Frequency Response

Frequency in Hz

M
a
g

n
it

u
d

e
 i
n

 d
B

0 200 400 600 800 1000 1200 1400 1600 1800
-100

-80

-60

-40

-20

0

20

A separate filter for WWVH is used that is similar except is centered at 1200Hz.

This filtered signal is then AM detected using an abs() function and then decimated by a
factor of 4 to a final sample rate of 450SPS. The decimation LP filter has a cutoff of
200Hz and magnitude response is shown below.

Inphase Filter Frequency Response

Frequency in Hz

M
a
g

n
it

u
d

e
 i
n

 d
B

0 200 400 600 800 1000 1200 1400 1600 1800
-100

-80

-60

-40

-20

0

20

Ver. 1.0 13

The seconds sync detection scheme works by implementing a 150 position energy
collection buffer where each location represents the averaged energy in 6.666.. mSec
steps. The seconds sync data is added to each "time bin" so that a full seconds worth
is captured in the entire buffer. Each bin's data is LP filtered using the IIR filter
described earlier. After several seconds of averaging, if a seconds sync pulse is
present, one or two bins will contain a lot more energy than the bins being filled with just
noise. The IIR LP filters allow averaging over many seconds and greatly increase the
signal to noise ratio of the sync pulses.

By simply calling the DSP library VectorMax(..) function, both the value of the peak
energy as well as the peak location within the 150 position SecSyncBuf can be
obtained. This position can now be used as the reference position in time for data
recovery and also Minute sync recovery.

One of the LCD Menu screens displays this buffer so that one can visually see the sync
pulse activity. It is normalized so that the peak is always shown at the center of the
screen.

Since it is possible(probably) that a sync pulse will straddle two time bins, a means to
slightly adjust the data clock was implemented to keep the sync pulse centered within
one bin. This routine simply looks on either side of the peak bin and either adds a
dummy sample into the Codec data stream or skips one sample. Eventually the sync
pulse will center itself within one bin.

4.4 Minute Sync Recovery

Once the seconds sync position is known, the minute sync position can be determined
by comparing the 1000Hz energy in the first 800mSecs of each second interval with the
energy in the last 200mSec. If a minute sync tone is present, the integrated energy
over the 800mSec will be much larger than that of the last 200mSec where there is no
tone. This ratio provides a S/N ratio that when processed and qualified determines the
start of each minute.

Once found, the sync routine keeps track of additional minute sync pulses and
increments a sync quality variable. If a sync pulse is found in a different seconds

Ver. 1.0 14

location than the original, the quality variable is decremented. If the value reaches zero
it is assumed the minute position is wrong and it starts over.

4.5 Data bit Recovery

Once the seconds and minute sync positions are determined, actual time data can start
being collected. A zero bit consists of 100Hz energy at 30mSec from the second start
to 200Msec from the start. A one consists of energy from 30mSec from the seconds
start to 500mSec from the start. By adding the energy from the 100Hz tone over the
zero interval and comparing it to the energy over the last 200ms noise interval, a
judgment can be made as to a zero or no signal. Likewise by integrating over the 300
to 500mSec range, a one bit can be determined.

The routine "CalcBit()" returns a -1, or a +1, or a 0 for a zero bit, a one bit, and a no bit
found respectively.

5 Time Decoder

The time data is decoded in the gettime.c software module. This module manages the
actual time decoding as well as incrementing and calculating local time variables.

The seconds counter counts from 0 to 59 and is used as a pointer to the position of
each specific data bit that needs to be found. Each seconds location corresponds to a
specific time data bit. A simple jump table was implemented that calls the appropriate
routine to process the desired bits. If a bit is not needed, a NOP() function is called.

In a perfect world it would only take one minute to capture all the data bits and be able
to set the time of the clock. However the WWV signal is seldom perfect and a more
robust scheme is needed to obtain the data bits correctly. The method used is to
integrate each bit over several minutes until they reach a threshold where the probability
that they are correct is good. Since a zero is -1 and a one is +1 and an unknown bit is a
0, one only has to add up the bits in each seconds location and the sign of the sum will
be the final bit value. This would work great except for one problem. Time does not

Ver. 1.0 15

stand still and as every minute passes, the minute and possibly all the rest of the time
data will change so you can't just add up the bit positions any more.

The solution is to add all possible bit combinations of each new data bit to an array and
then search for the maximum value within the array which, over time, should be the best
guess for the correct time.

Since there are 38 data bits in each minute, one would need an array of 2^38 locations
to store all possibilities. Since 275 Gbytes is a little steep, only a subset of all the data
bits is used. If only the time and year bits are used, 24 bits are required but this is still
way over the memory budget. Since the hour and year doesn’t change very often one
can just look at the minutes, hour, and year bits as small groups and use much smaller
arrays.

Since the data is BCD encoded, there are actually only 60 possible combinations for
minutes, only 24 combinations for hours, and 100 combinations for the last 2 digits of
the year. By splitting up the integration arrays in this manner, it easily fits within the
dsPICs memory space.

The UpdatxxxBit() routines are called to place the latest bit value into these integration
arrays. Routines to check for the peak integration value are called on second positions
where there are no data bits to collect. Thresholds are checked and when reached, the
time is set. During the integration process, the display shows its best guess as a way to
see how well the integration process is proceeding. On strong signals, the correct time
is usually found within a couple minutes even though the thresholds may not be
reached for many more minutes.

6 FM Synthesizer
Just displaying the correct time would be boring so some clock sounds are generated
on the 15 minute marks as well as on the hour. A tick tock sound is also available on
every second.
If there was sufficient Flash memory available, it would be a trivial task to just read out
pre-recorded audio samples. One way would be to add a little eight pin 8Mbit Flash
chip to the dsPICDEM 1.1 board. Since the goal was to use an unmodified board, a
different method would be needed.

In the 1970's a new method of synthesizing sound was created by John Chowning at
Stanford University. His research an techniques led to the development of the very
popular Yamaha DX-7 music synthesizer.

http://www.harmony-central.com/Computer/synth-history.html

A search on the web will reveal much more detail on the FM synthesis techniques so
only a brief description will be given here.
Basically the idea is to FM modulate a sine wave with another sine wave where the
amplitude of both can be modified in time. Sounds with complex harmonic content can
be easily generated using this technique.

The basic generator is

Ver. 1.0 16

))2sin()(2sin()()(FmttMIFcttAtV ππ +=

The outer sine is the main carrier tone while the inner sine is the FM modulating tone.
The four main parameters are the carrier frequency(Fc), the carrier amplitude(A(t), the
modulation frequency(Fm), and the Modulation Index(MI(t).
 Note the carrier and modulation frequency are fixed in time but the amplitude and
modulation index are time varying.
Multiple generators like this can then be added together for very complex sound
structures.

SoundGen.c and the associated soundtable.h file implement all the cuckoo clock
sounds. The sound generator when triggered by time events, generates 7200SPS 16
bit audio samples that are then output to the Si3000 Codec D/A.

The routine ServiceSound() is called to fill a new Codec output buffer and monitor the
time events for triggering the various sounds and SoundStateMachine() is called to
initialize the required sounds and repeat the hour chimes. The function
CreateNextSample() is the guts of the generator and creates a single sample that is the
sum of three of the FM generators.

Each generator uses the following data structure for its parameters:
typedef struct
{
 int mphzinc; //modulation phz increment value
 int mphzacc; //modulation phz accumulator
 int mindexslope; //modulation index slope value
 int mindex; //modulation index
 int cphzinc; //carrier phz increment value(.10986 Hz increments)
 int cphzacc; //carrier phz accumulator
 int campslope; //carrier amplitude slope value
 int camp; //carrier amplitude
} FMGenStruct;

The sin generator is implemented using a 16 bit accumulator which has the phase
increment value added to it each sample time. The top 8 bits of the accumulator are
then used as an index into a 256 position sine lookup table.
Carrier and modulation frequency is then set by setting the phase increment value
where the frequency is F*65536/7200.

In order to reduce the size of the sound parameter tables, the slope of the amplitude
and modulation index are stored in the tables. This makes the table generation more
awkward but makes the tables much more compact.

Each sound requires two data structures. The first is an initialization table that provides
the starting values for the three generators:
typedef struct

{

 int minc0; //Gen 0 initial modulation phz increment value

 int mindx0; //Gen 0 initial modulation index value

 int cinc0; //Gen 0 initial carrier phz increment value

 int camp0; //Gen 0 initial carrier amplitude value

 int minc1; //Gen 1 initial modulation phz increment value

Ver. 1.0 17

 int mindx1; //Gen 1 initial modulation index value

 int cinc1; //Gen 1 initial carrier phz increment value

 int camp1; //Gen 1 initial carrier amplitude value

 int minc2; //Gen 2 initial modulation phz increment value

 int mindx2; //Gen 2 initial modulation index value

 int cinc2; //Gen 2 initial carrier phz increment value

 int camp2; //Gen 2 initial carrier amplitude value

}FMInitStruct;

The second structure provides the run time shape of the sound and is of the following
structure:
typedef struct

{

 int changepos; //When the change should occur(1/7200 Sec increments)

 int mslope0; //FM gen 0 modulation index slope value

 int caslope0; //FM gen 0 carrier amplitude slope value

 int mslope1; //FM gen 1 modulation index slope value

 int caslope1; //FM gen 1 carrier amplitude slope value

 int mslope2; //FM gen 2 modulation index slope value

 int caslope2; //FM gen 2 carrier amplitude slope value

} FMDataStruct;

Basically the first parameter is the position in time where these parameters should be in
effect in sample counts. The rest of the values are used until the change position is
reached then it moves to the next set. When a zero is found in the changepos value,
the sequence is finished.

Ver. 1.0 18

The Cuckoo sound is the easiest to generate and doesn’t really involve the FM process.
It is just a single tone with an amplitude ramp up and then down followed by a second
sequence at a different frequency.

The following is the initial setup for the cuckoo sound. The amplitude starts at zero and
the two desired tone frequencies are set.
// Cuckoo Sound 1000Hz and 817Hz

const FMInitStruct CUCKOO_INI =

{//minc, mindx, cinc, camp

 0, 0, 9102, 0, //gen 0

 0, 0, 7439, 0, //gen 1

 0, 0, 0, 0 //gen 2

};

This is the sound shape table for the cuckoo sound.
const FMDataStruct CUCKOO_DATA[8] =

{// pos, mslope0, caslope0, mslope1, caslope1, mslope2,

caslope2

 72, 0, 444, 0, 0, 0, 0, //10mS ramp up

 504, 0, 0, 0, 0, 0, 0, //60ms hold

 576, 0, -444, 0, 0, 0, 0, //10ms ramp down

 1584, 0, 0, 0, 0, 0, 0, //140ms gap

 1656, 0, 0, 0, 444, 0, 0, //10ms ramp up

 2448, 0, 0, 0, 0, 0, 0, //110ms hold

 2520, 0, 0, 0, -444, 0, 0, //10ms ramp down

 0,0,0,0,0,0,0

};

The waveform looks like the following:

Gen0
Gen1

1000Hz
817Hz

10

0 70

80

220

230

340
350

Time(mS)

Carrier Amplitude

Cuckoo Wave Shape

Ver. 1.0 19

The single bell sound uses one generator with some FM modulation to create the initial
harmonics that occur when a bell is struck. After that the single tone amplitude shape is
a linear piece-wise approximation to a decaying exponential.

//==

// 1 Bell Sound 1500Hz

const FMInitStruct BELL1_INI =

{//minc, mindx, cinc, camp

 9751,10010,13653, 0, //gen 0

 0, 0, 0, 0, //gen 1

 0, 0, 0, 0 //gen 2

};

const FMDataStruct BELL1_DATA[8] =

{//pos, mslope0, caslope0, mslope1, caslope1, mslope2, caslope2

30, -143, 800, 0,0,0,0, //4mS

 70, -143, -12, 0,0,0,0, //10ms

 1000, 0, -12, 0,0,0,0, //

 2000, 0, -6, 0,0,0,0,

 3000, 0, -3, 0,0,0,0,

 4000, 0, -2, 0,0,0,0,

 5000, 0, -1, 0,0,0,0,

 0,0,0,0,0,0,0

};

The carrier and modulation index waveforms for the bell sound are graphed below:

Gen0

1500Hz

0

Time(Samples)

Modulation Index

Bell Wave Shape
24000

1000 2000 3000 4000 500030

Carrier Amplitude

10010

70

The Gong sound is the most complex and requires all three generators at different
frequencies along with different modulation index waveforms.

Ver. 1.0 20

7 Summary
This project served its purpose in gaining a better understanding of the dsPIC and its
development tool set.

7.1 Processor Resources

The clock is completely functional and did not consume all the dsPIC resources in terms
of CPU power or memory.
The program used about 17Kbytes of program memory and a little over 3Kbytes of data
RAM.

The worst case CPU load in the main non-interrupt processing loop was about 32% at
the slowest dsPICDEM 1.1 board clock rate of 7.3728MHz and an x4 PLL.
The interrupt background tasks add about another 5% to the CPU load.

One of the biggest surprises on this project was the implementation of the sound
generators. It was assumed that the FM generators would have to be implemented in
assembler in order to take advantage of the Q1.15 fractional multiplier and accumulator
as well as the repeat instruction. The algorithm was coded in C just to verify the
approach before hand translating to assembler. It turned out that the C compiler
generated code was more than sufficient to implement the generators without having to
revert to assembler. Looking at the assembler generated code reveals pretty decent
optimizing of the 32bit casts and multiplication code.

7.2 Clock Performance Issues

7.2.1 WWV/WWVH Demodulation

The WWV demodulator/decoder is far from optimum. The ideal demodulator would
involve matched filters for extracting the sync and data pulses. Unfortunately, there is
not enough on-board data RAM to implement the long correlation arrays needed.
However, since at least in North America, WWV can be heard most of the time with
decent signal integrity so the clock can be set fairly quickly.

The demodulator algorithm is susceptible to noise and interference on the WWV signal.
False minute sync is a problem during periods of high static or even loud voice
announcements. A separate narrower minute sync filter would probably help this area.

7.2.2 Time Keeping

The time keeping when not synced to WWV, depends upon the accuracy of the main
CPU clock oscillator. One possible solution would be to monitor the clock accuracy
while synced up to WWV and store this value in non-volatile EEROM and use it to add
or subtract samples to maintain better clock accuracy.

There is a processing delay so the clock will be behind the true time by a hundred
mSecs or so. This could be factored out in order to make the clock tics match the WWV
ticks exactly.

Ver. 1.0 21

7.2.3 Sound Generation

The sound generation could be improved with a lot more tinkering. Adding more steps
to the sound tables would smooth out the decay envelopes. Also more accurate sounds
could be created with lots of tweaking of the FM parameters. Adding an external Flash
memory chip to save actual waveforms would be a better product solution.

7.3 Toolset Issues

The MPLAB IDE and C30 compiler operated with few problems. The ICD-2 debugger
worked as long as one didn't forget to plug it into the demo board before programming.
Usually a program restart and power sequence of the target board and ICD-2 would be
required of that occurred.

Most of the debugging was done with a scope and not the IDE. Single stepping was
problematic especially when interrupts were flailing away.

