
WinPSK Technical Reference Manual

by

Moe Wheatley, AE4JY
ae4jy@mindspring.com

12/28/99 Moe Wheatley, AE4JY 2

Table of Contents

1. WINPSK OVERVIEW ...4

1.1. Introduction .. 4

2. WINPSK SIGNAL GENERATION ...5

2.1. Block Diagram .. 5

2.2. Input Characters... 5

2.3. Varicode Encoding.. 5

2.4. BPSK Serialization.. 7

2.5. QPSK Serialization ... 7
2.5.1. ECC Encoding Method.. 7

2.6. Differential Phase Shift encoding.. 8

2.7. Wave Shaping and Carrier Generation.. 9

2.8. Power Spectrum.. 13

3. WINPSK SIGNAL DETECTION ..14

3.1. Block Diagram .. 14

3.2. Soundcard Input ... 15

3.3. Decimation by 2... 15

3.4. Complex Mixer ... 15

3.5. Decimation by 9... 16

3.6. Matched Data Bit filter ... 17

3.7. Frequency Error filter .. 18

3.8. AGC .. 19

3.9. Frequency Error Detection/Correction .. 20

3.10. Symbol Synchronization.. 24

3.11. Squelch Function... 25

3.12. Symbol Decoding... 31
3.12.1. BPSK.. 32
3.12.1.1. Maximum Likelihood Detector .. 32
3.12.2. QPSK.. 34
3.12.2.1. Maximum Likelihood example .. 34

12/28/99 Moe Wheatley, AE4JY 3

3.12.2.2. Soft Viterbi Decoder.. 35

3.13. Display Signals .. 38
3.13.1. FFT for Spectrum Display ... 38
3.13.2. Vector Display .. 38
3.13.3. Input Signal... 38
3.13.4. Sync histogram.. 38

4. WINDOWS PROGRAM IMPLEMENTATION..39

4.1. PC/Windows Implementation Issues .. 39

4.2. Real Time Considerations... 39

4.3. Float vs. Integer Implementation.. 39

4.4. PC Soundcard Settings ... 40

4.5. Program Structure.. 41
4.5.1. Hierarchy Diagram.. 41
4.5.2. Class Descriptions ... 42

4.6. Miscellaneous Software issues... 44
4.6.1. FIR Filter implementation.. 44
4.6.2. Inter-Class Communication ... 45
4.6.3. Processor Loading ... 45

PROBLEMS/BUGS/ISSUES...46

5. REFERENCES: ...47

12/28/99 Moe Wheatley, AE4JY 4

1. WinPSK Overview

1.1. Introduction
PSK31 is an amateur radio communications mode introduced by Peter Martinez, G3PLX , that

uses phase modulation and special character coding. It provides robust narrow bandwidth keyboard Chat
type communications between two or more stations.

This document was written to describe some of the internal workings of the WinPSK program that
was developed as a result of my experimenting with DSP on a PC soundcard. Previously, experimenting
with DSP was achieved using evaluation boards from various DSP chip manufacturers. Programming
these boards was tedious due to their assembly language and fixed-point number representation. Trying
to learn the basics of DSP often got lost in the details of programming and debugging these specialty
processors.

Beginning with the Intel 486 and subsequent Pentium class processors being used in the popular
desktop PC platform, the processing power has increased to the point where real time signal processing
can now be done using floating point arithmetic and a PC soundcard for analog I/O. The amateur radio
community has benefited from these advances with PC Soundcard based applications for SSTV, RTTY,
and more recently, PSK31.
My interest in all this was in learning how to develop and program various DSP communications
algorithms using a standard Windows1 based PC platform. It is from these experiments that WinPSK
evolved from basically a DSP test bed to a simple functioning program for PSK31. This paper describes
in some detail the basic design decisions that were made during this learning process that led to the final
program. It is not meant as a definitive reference on PSK31 implementation but just an engineering
notebook describing this program. Perhaps others can build on some of the information here to improve
this program as well as be motivated to experiment with new modes.

The basic goal was to write a working PSK31 interface program from scratch. Unlike some other
HF modes, Peter Martinez has made available very complete specifications for this mode2,3. Also his
Windows program "PSKsbw" provided an excellent reference program for verifying and testing various
algorithms.

"WinPSK User Guide" is a separate document that describes the user operation of the program.
This document only describes the inner workings of the program.

The program will be described in sections starting with signal generation then followed by the
reception algorithms. Finally, the overall software architecture and miscellaneous issues will be
discussed.

12/28/99 Moe Wheatley, AE4JY 5

2. WinPSK Signal Generation
Creating a PSK31 signal is done in stages starting with character input to final waveform output to the
soundcard.

2.1. Block Diagram

Wave
Shaper

Wave
ShaperDifferential

Phase
State
Machine

8
bits

3 to 15
bits

FIFO

Key
Input

Sin/Cos
Generator

Varicode
Table

BPSK or
QPSK
Serializer

Q

I

 2 bit symbol
00= NO CHANGE
10= 180 CHANGE
01= +90 CHANGE
11= -90 CHANGE

Soundcard
DAC

Audio Out
To
Transmitter

2.2. Input Characters
PSK31 sends and receives 8 bit characters. 0 through 127 are the standard ASCII characters and 128 to
255 are extended characters. WinPSK ignores most control codes below the SP(/0x30) character to
reduce some of the garbage from making it to the screen. Some of the Windows controls also behave
badly when a control character is sent to them.

2.3. Varicode Encoding
The first step in PSK31 encoding is to map the 8 bit fixed length input characters into variable length
characters. By mapping most used characters into shorter codes and least used characters into longer
codes, the overall data transfer speed can be increased. This is similar to Morse code where common
letters are shorter sequences. The letter 'e' occurs more often in text than a 'z' so it has a varicode of '11'
while a 'z' has a code of '111010101'. Notice that lowercase letters have shorter codes than upper case
letters. This is why one should not use all uppercase when using PSK31 since the varicode was
optimized for lowercase letters.

Since the character data is sent serially, some means of separating characters is also needed. This is
accomplished in PSK31 by specifying that two or more consecutive zero bits separate each character.
This also places the requirement that each character code cannot contain more than one consecutive
zero. It also means each code must start and end with a one. With these requirements the Varicode code
table was specified. The varicode words from the table are sent msb first. If a new character is not ready
in time to be sent, Zeros are padded into the data stream.

Example bit stream of varicoded character sequence "abc":

…0010110010111110010111100…..
 a b c

12/28/99 Moe Wheatley, AE4JY 6

Input
Code

Varicode
Output

Input
Code

Varicode
Output

Input
Code

Varicode
Output

Input
Code

Varicode
Output

NULL 1010101011 '@' 1010111101 128 1110111101 192 11011101111
SOH 1011011011 'A' 1111101 129 1110111111 193 11011110101
STX 1011101101 'B' 11101011 130 1111010101 194 11011110111
ETX 1101110111 'C' 10101101 131 1111010111 195 11011111011
EOT 1011101011 'D' 10110101 132 1111011011 196 11011111101
ENQ 1101011111 'E' 1110111 133 1111011101 197 11011111111
ACK 1011101111 'F' 11011011 134 1111011111 198 11101010101
BEL 1011111101 'G' 11111101 135 1111101011 199 11101010111
BS 1011111111 'H' 101010101 136 1111101101 200 11101011011
HT 11101111 'I' 1111111 137 1111101111 201 11101011101
LF 11101 'J' 111111101 138 1111110101 202 11101011111
VT 1101101111 'K' 101111101 139 1111110111 203 11101101011
FF 1011011101 'L' 11010111 140 1111111011 204 11101101101
CR 11111 'M' 10111011 141 1111111101 205 11101101111
SO 1101110101 'N' 11011101 142 1111111111 206 11101110101
SI 1110101011 'O' 10101011 143 10101010101 207 11101110111
DLE 1011110111 'P' 11010101 144 10101010111 208 11101111011
DC1 1011110101 'Q' 111011101 145 10101011011 209 11101111101
DC2 1110101101 'R' 10101111 146 10101011101 210 11101111111
DC3 1110101111 'S' 1101111 147 10101011111 211 11110101011
DC4 1101011011 'T' 1101101 148 10101101011 212 11110101101
NAK 1101101011 'U' 101010111 149 10101101101 213 11110101111
SYN 1101101101 'V' 110110101 150 10101101111 214 11110110101
ETB 1101010111 'W' 101011101 151 10101110101 215 11110110111
CAN 1101111011 'X' 101110101 152 10101110111 216 11110111011
EM 1101111101 'Y' 101111011 153 10101111011 217 11110111101
SUB 1110110111 'Z' 1010101101 154 10101111101 218 11110111111
ESC 1101010101 '[' 111110111 155 10101111111 219 11111010101
FS 1101011101 '\' 111101111 156 10110101011 220 11111010111
GS 1110111011 ']' 111111011 157 10110101101 221 11111011011
RS 1011111011 '^' 1010111111 158 10110101111 222 11111011101
US 1101111111 '_' 101101101 159 10110110101 223 11111011111
SPACE 1 '`' 1011011111 160 10110110111 224 11111101011
'!' 111111111 'a' 1011 161 10110111011 225 11111101101
' " ' 101011111 'b' 1011111 162 10110111101 226 11111101111
'#' 111110101 'c' 101111 163 10110111111 227 11111110101
'$' 111011011 'd' 101101 164 10111010101 228 11111110111
'%' 1011010101 'e' 11 165 10111010111 229 11111111011
'&' 1010111011 'f' 111101 166 10111011011 230 11111111101
''' 101111111 'g' 1011011 167 10111011101 231 11111111111
'(' 11111011 'h' 101011 168 10111011111 232 101010101011
')' 11110111 'i' 1101 169 10111101011 233 101010101101
'*' 101101111 'j' 111101011 170 10111101101 234 101010101111
'+' 111011111 'k' 10111111 171 10111101111 235 101010110101
',' 1110101 'l' 11011 172 10111110101 236 101010110111
'-' 110101 'm' 111011 173 10111110111 237 101010111011
'.' 1010111 'n' 1111 174 10111111011 238 101010111101
'/' 110101111 'o' 111 175 10111111101 239 101010111111
'0' 10110111 'p' 111111 176 10111111111 240 101011010101
'1' 10111101 'q' 110111111 177 11010101011 241 101011010111
'2' 11101101 'r' 10101 178 11010101101 242 101011011011
'3' 11111111 's' 10111 179 11010101111 243 101011011101
'4' 101110111 't' 101 180 11010110101 244 101011011111
'5' 101011011 'u' 110111 181 11010110111 245 101011101011
'6' 101101011 'v' 1111011 182 11010111011 246 101011101101
'7' 110101101 'w' 1101011 183 11010111101 247 101011101111
'8' 110101011 'x' 11011111 184 11010111111 248 101011110101
'9' 110110111 'y' 1011101 185 11011010101 249 101011110111
':' 11110101 'z' 111010101 186 11011010111 250 101011111011
';' 110111101 '{' 1010110111 187 11011011011 251 101011111101
'<' 111101101 '|' 110111011 188 11011011101 252 101011111111
'=' 1010101 '}' 1010110101 189 11011011111 253 101101010101
'>' 111010111 '~' 1011010111 190 11011101011 254 101101010111
'?' 1010101111 DEL 1110110101 191 11011101101 255 101101011011

12/28/99 Moe Wheatley, AE4JY 7

2.4. BPSK Serialization
PSK31 is actually Differential Phase Shift Keying because the information is sent as changes in signal
phase rather than an absolute phase state. This makes signal reception much easier since the initial
signal phase does not have to be known. For the Binary Phase Shift Keying mode, the signal either
changes phase by 180 degrees for each ZERO bit or remains the same to represent a ONE bit. The
symbol rate for PSK31 is 31.25 symbols per second or a period of .032 Seconds. The Varicode word is
serialized and converted into a 2 bit symbol before being sent to the differential phase state machine
which will determine the next signal phase based on the present phase and the new symbol.

180 Deg. Change No Change

BPSK "One" Data Bit
(symbol='00')

BPSK "Zero" Data Bit
(symbol='10')

Shift Register

Varicode Word

Symbol Bit
 '00' 1 No Change
 '10' 0 180 deg. Change

2.5. QPSK Serialization
Quad Phase Shift Keying allows 4 unique phase states for each symbol effectively doubling the amount
of information that can be sent over BPSK. Rather than send data twice as fast, PSK31 uses the extra
information to allow for error correction.

180 deg. change

QPSK '10' symbol QPSK '01' symbol QPSK '11' symbolQPSK '00' symbol

+90 deg. shift -90 deg. shiftno change

2.5.1. ECC Encoding Method

The error correcting coding method used in PSK31 uses convolution codes to essentially "spread out" the
redundant information over time. If one were to simply send each bit twice it is easily seen that if an error
occurs in one of the bits, there is no way to tell which bit is the correct one so the redundancy is useless.
If however the redundancy is spread out over several bits, there are some powerful mathematical
methods to determine where the error occurred and correct it. Many books10 have been written to
describe these methods so they will not be dealt with in any depth here.
PSK31 spreads the data over 5 bits using rate ½ , constraint length 5, convolutional coding. The rate ½
refers to the fact that half of the data is being used for redundancy. The constraint length specifies the
number of bits used to spread the redundancy.

12/28/99 Moe Wheatley, AE4JY 8

Logically, a shift register is used to shift in each data bit. By exclusive OR'ing certain bits together, the
desired symbol encoding is performed. The bit patterns(polynomials) which are used for exclusive OR'ing
determines how well the system will be able to correct errors. The two polynomials used in PSK31 are:

034)(1 xxxxG ++=
0124)(0 xxxxxG +++=

The following diagram shows how the polynomials are used to generate a two bit symbol for every input
bit.

s0

s12 bit
Symbol

x3 x2x4 x1 Data bit IN

Note that the data bits from the varicode word are inverted before entering the shift register. This is so
that the idle stream of all zeros will produce symbols of '10' which are 180 degree phase shifts. This is
useful for maintaining symbol sync on the receiver side and being compatible with BPSK.

Varicode Word

shift register

...

Convolution
Code Look-up
table

31.25 Hz
symbol
clock

 Symbol
00 = NO CHANGE
10 = 180 CHANGE
01 = +90 CHANGE
11 = -90 CHANGE

The QPSK encoder is actually implemented using a look-up table rather than using exclusive OR gates.

2.6. Differential Phase Shift encoding
The next step is to take the two bit symbol and convert it into the actual signal phase state. Depending on
the previous signal phase, there are 4 signal phase possibilities for each new symbol. A simple state
machine takes the present phase state information and the new symbol to come up with the next signal
phase state. In WinPSK this is done using state tables.

12/28/99 Moe Wheatley, AE4JY 9

2.7. Wave Shaping and Carrier Generation
The common way to create angle modulated signals is to combine two sinusoidal waveforms whose
frequency is the desired carrier frequency and that are 90 degrees out of phase from each other. By
adding these two signals in different proportions, a signal of any desired phase can be created. The two
signals are referred to as I(in phase) and Q(quadrature phase).

cos(wct)

Q

sin(wct)

I

a

Q

I

The following MathCad4 simulation shows how a BPSK signal could be created using the I/Q method.

carrier amplitude A
1

2
Symbol frequency Fs 31.25
carrier frequency Fc 150

Carrier equations
Ic()t .A sin()...2 π t Fc Qc()t .A cos()...2 π t Fc

Modulation equations
I()t if(),,()<t .032 1 1 Q()t if(),,()<t .032 1 1

0 0.05 0.1

1

1

I()t

t

0 0.05 0.1

1

1

Q()t

t

This is a 180 degree phase shift followed by No phase shift.

1 0 1

1

1

BPSK Vectors

12/28/99 Moe Wheatley, AE4JY 10

bpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08

1

0.5

0

0.5

1

BPSK Signal

bpsk()t

t

Note the abrupt phase change at time t = .032 seconds. This is not desirable since it makes the PSK
signal very wide. One way to limit the bandwidth would be to filter the output signal. PSK31 uses a
different method by using waveshaping on the I and Q input signals so that instead of abruptly going from
a 1 to a –1, the signal makes a cosine shaped transition between –1 and 1.

Here is the same MathCad simulation except that the I and Q modulation signals are no longer
rectangular, but are cosine shaped.

Fc 400 carrier frequency A
1

2

 carrier amplitude

Fs 31.25 Symbol frequency t ..,0 .000032 0.099 Plot range
carrier equations

Ic()t .A sin()...2 π t Fc Qc()t .A cos()...2 π t Fc
modulation equations

I()t if(),,()<t .048 sin()..π Fs t 1 Q()t if(),,()<t .048 sin()..π Fs t 1

0 0.05 0.1

1

1

I()t

t

0 0.05 0.1

1

1

Q()t

t

This is a 180 degree phase shift followed by No phase shift.

12/28/99 Moe Wheatley, AE4JY 11

1 0 1

1

1

BPSK Vectors

bpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08

1

0.5

0

0.5

1

BPSK Signal

bpsk()t

t

Note the gradual transition from one phase state to the next. This results in a much narrower bandwidth
signal without the need for any post filtering. Also it can be seen that the amplitude of the signal is not
constant. This means that the transmitter must not compress or limit the audio waveform otherwise the
signal will again get much wider in bandwidth. This is perhaps the biggest problem with setting up a
PSK31 station. It is very easy to overdrive and distort the PSK31 signal by applying the relatively high
amplitude audio signal from the PC soundcard into the low level microphone input of a SSB transmitter.
There is no easy way to monitor ones own signal for purity so one must rely on other's signal reports.

12/28/99 Moe Wheatley, AE4JY 12

Finally here is a MathCad simulation showing a QPSK signal that changes 180 degrees then by -90
degrees.

Modulation equations

I()t if ,,<t .032 cos .π
t

T
1 Q()t if ,,<t .064 cos .π

t

T
1

0 0.05 0.1
1

0

1

I()t

t

0 0.05 0.1
1

0

1

Q()t

t

This is a 180 degree phase shift followed by a –90 degree phase shift.

1 0 1

1

1

QPSK Vectors

Q()t

I()t

qpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08
1

0.5

0

0.5

1
QPSK Signal

qpsk()t

t

Note that during 90 degree phase changes, the amplitude does not drop all the way to zero as in the 180
degree case.

12/28/99 Moe Wheatley, AE4JY 13

2.8. Power Spectrum
The BPSK/QPSK signal has a power spectrum consisting of a large main lobe centered around the
carrier frequency out to a null at the carrier frequency +/- 31.25 Hz. There are multiple lobes extending
out to infinity but their amplitudes continue to drop.
Here is a MathCad simulation of the PSK31 power spectrum6.

Fs 31.25 T
1

Fs
f ..,140 139.2 139.2

S()f ..T
sin()...2 π f T

...2 π f T

2
1

1 .4 ().f T 2

2

Sdb()f .10 log()S()f 14.9

150140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
100

90

80

70

60

50

40

30

20

10

0
Power Spectrum of PSK31

Frequency (Hz)

Po
w

er
 (

db
)

The following FFT scan of a QPSK signal compares favorably with the math model. The vertical divisions
are 10 db.

12/28/99 Moe Wheatley, AE4JY 14

3. WinPSK Signal Detection

3.1. Block Diagram
The following block diagram shows the major functions implemented by WinPSK to receive PSK31
signals. Receiver audio is captured by the PC soundcard and processed into final ASCII characters for
display. This schemeis by no means the most optimal method but is the method that evolved from a lot of
experimentation with various architectures for WinPSK.

S
ig

na
l D

is
pl

ay
F

F
T

, I
np

ut
S

ig
na

l D
is

pl
ay

I/Q
, E

ye
, V

ec
to

r,
 S

yn
c

I Q

A
F

C

A
G

C
A

ng
le

E
rr

or

F
re

q
E

rr
or

S
ym

bo
l

C
lo

ck
S

yn
c

8
bi

t
C

ha
ra

ct
er

to D
is

pl
ay

S
qu

el
ch

S
et

po
in

t

S
ig

na
l

Q
ua

lit
y

Le
ve

l

...

S
-M

et
er

/
S

qu
el

ch
C

on
tr

ol

A
ud

io
 In

F
ro

m

R
ec

ei
ve

r

11
02

5
H

z
S

am
pl

e
R

at
e

C
en

te
r

F
re

qu
en

cy
S

et
po

in
t

D
ec

im
at

e
by

 2
 F

IR
S

ou
nd

C
ar

d
A

D
C

55
12

.5
 H

z
S

am
pl

e
R

at
e

45
 T

A
P

z-
1

Q
2

Q
3

4
S

ym
bo

l
P

er
io

d
M

ax
im

um
Li

ke
ly

ho
od

C
al

cu
la

to
r

bl
oc

k

31
.2

5
H

z
S

am
pl

e
R

at
e

z-
1

Q
1

z-
1

I2
I3

z-
1

I1

 S
ym

bo
l P

er
io

d
D

el
ay

 E
le

m
en

ts

z-
1

Q
0

z-
1

I0

S
in

/C
os

N
C

O

D
ec

im
at

e
by

 3
 F

IR

26
 T

A
P

I
26

 T
A

P

Q

D
ec

im
at

e
by

 3
 F

IR

F
re

q
F

ilt
er

79
 ta

p
F

IR

B
it

F
ilt

er
79

 ta
p

F
IR

61
2.

5
H

z
S

am
pl

e
R

at
e

Q
P

S
K

 o
ut

pu
t

bi
t

Q
P

S
K

B
P

S
K

V
ar

ic
od

e
D

ec
od

e
Lo

ok
-u

p
T

ab
le

S
hi

ft
R

eg
is

te
r/

lo
gi

c

P
ha

se
 D

iff
er

en
ce

 a
ng

le

B
P

S
K

 o
ut

pu
t

bi
t

S
of

t-
de

ci
si

on
V

ite
rb

i
D

ec
od

er
S

Y
M

_1
1

S
Y

M
_1

0

S
Y

M
_0

1

S
Y

M
_0

0

12/28/99 Moe Wheatley, AE4JY 15

3.2. Soundcard Input
The receiver audio is sampled by the soundcard into 16 bit samples at a 11025 Hz rate and converted
into floating point representation for the remainder of the processing.

3.3. Decimation by 2
The first processing block bandlimits the signal to 2700 Hz and performs a sample rate conversion down
to 5512.5 Hz. A 45 Tap FIR decimation filter is used to perform this task. The following is a frequency
response plot of the filter. The response is flat out to about 2000 Hz which is about the limit the FFT
display can accurately display.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
100

90

80

70

60

50

40

30

20

10

0

10
45 Tap Decimation by 2 FIR

Hz

dB

Ak

fk

This real signal is fed to the FFT and realtime display section for tuning and visual signal monitoring. It is
also sent on to the next stage of the PSK decoder.

3.4. Complex Mixer
The next stage converts the real audio input into a complex baseband signal centered around the users
center frequency set point. An NCO(numerically controlled oscillator) is implemented as a sin(wt) and a
cos(wt) frequency source where ω is a control input from the users center frequency setpoint and also the
AFC control signal that is derived further downstream. These two frequencies are 90 degrees apart and
are multiplied by the real input signal to create two data streams called I and Q.

)cos()()(ttInputtI ω=)sin()()(ttInputtQ ω=

The following code segment performs all these functions:

//Generate complex sample by mixing input sample with NCO's sin/cos
Inptr1->x = pIn[i] * cos(vcophz); //generate I and Q signals
Inptr1->y = pIn[i] * sin(vcophz);
vcophz = vcophz + (m_phzinc + freqerror); //update NCO
if(vcophz > PI2) //handle 2 Pi wrap around

vcophz -= PI2;

12/28/99 Moe Wheatley, AE4JY 16

3.5. Decimation by 9
The complex signal is then down sampled again by 9 to further reduce the sampling rate to about 20
times the signal bandwidth. Two stages of decimation by 3 are used rather than one. It is more
processor efficient to break it up rather than have a fairly long FIR running at the highest sample rate.
Each stage is identical and has a frequency response that is the same except that the one is scaled
infrequency by 3. Since the signal is complex, the filters are run on both the I and Q signal.

0 120 240 360 480 600 720 840 960 1080 1200
100

90

80

70

60

50

40

30

20

10

0

10
27 Tap Decimation by 3 FIR(stage 1)

Hz

dB

Ak

fk

0 40 80 120 160 200 240 280 320 360 400
100

90

80

70

60

50

40

30

20

10

0

10
27 Tap Decimation by 3 FIR(stage 2)

Hz

dB

Ak

fk

The final sampling frequency is now 11025/18 or 612.5 Hz.

12/28/99 Moe Wheatley, AE4JY 17

3.6. Matched Data Bit filter
The final system bandwidth is set by this FIR filter. This filter has two purposes. One is to provide a
magnitude response that provides the best signal to noise ratio in order to extract the data signal from the
noise. The second thing it must do is minimize any ISI(Inter-Symbol Interference) that is generated in the
transmitter, signal path, and receiver system. With PSK31 there is no ISI from the transmission process
due to the wave shaping of the signal, so any ISI will come from the signal path and the receiver filters.
Since the HF signal path is not predictable the best one can do is minimize the ISI generated by the
receiver bit FIR filter. I could find no books or papers on the ideal filter for this mode of PSK. By
experimentation it appears the ideal filter would a "brickwall" low pass filter with a flat magnitude response
out to one-half the bit rate of 31.25 Hz or 15.625 Hz. It must also have a minimum amount of delay.
These requirements seem to be almost mutually exclusive since the more ideal the filter, the longer the
delay. A compromise filter was developed that gives fairly low ISI and a reasonable cutoff shape. Better
filters are probably out there but would not provide a whole lot of noticeable performance improvement,
especially in the HF environment. The addition of interleaving or longer ECC codes would probably make
a bigger difference. Below is the frequency response of the bit filter.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
5

79 tap FIR "Matched" Bit Filter

Hz

dB

Ak

fk

All the FIR filter coefficients were designed using either MathCAD or a program called PC-DSP by DSP
Solutions.

12/28/99 Moe Wheatley, AE4JY 18

3.7. Frequency Error filter
Unfortunately, the AFC(automatic frequency control) block could not use the output of the bit filter for
locking on to the incoming signal frequency. The problem is that the bit filter is too narrow and the AFC
can lock onto either side of the PSK31 idle signal which looks like two carriers spaced 15.625 Hz above
and below the center frequency. The solution though wasteful was to use a separate filter just for the
frequency control that was wide enough that it cannot distinguish between the PSK31 idle peaks. The
response is only 6 dB down at 31.25 Hz so it spans both idle peaks.

0 10 20 30 40 50 60 70 80 90 100
90

80

70

60

50

40

30

20

10

0

10
79 tap FIR Frequency Error Filter

Hz

dB

Ak

fk

12/28/99 Moe Wheatley, AE4JY 19

3.8. AGC
The AGC is derived from the average signal magnitude using the scheme shown below. The I and Q
signals are then divided by the this AGC signal to help keep the average amplitude constant for the
remainder of the processing.

Two different time constants are used depending on whether the signal is increasing in strength or
decreasing.
The low pass filters are simple IIR stages with one delay element. They have the same response as an
analog RC filter. This type filter is useful for obtaining a very low cutoff frequency with little processor
overhead. It can be implemented by one line of code. (y = k1*y + k2*x;) The down side is it's poor
frequency response as can be seen in the following plots.

KS 1000 KF 250

t()n .n
18

11025

k1 1
1

KS
k2

1

KS
k3 1

1

KF
k4

1

KF
ysn

.k1 ysn 1
.k2 xn yfn

.k3 yfn 1
.k4 xn

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
itu

de

Fs
11025

18
T

1

Fs
fs 10 δf .0.01 fs

f ..,0 δf fs z()f e()....j 2 π f T

Gain
Control
SignalI + QQ(t)

IIR Fast
Attack
LP Filter

2 2
I(t)

IIR Slow
Decay
LP Filter

z-1k1

k2
Slow

k2in inout

z-1k3

out
Fast

12/28/99 Moe Wheatley, AE4JY 20

Hf()z
.k4 z

z k3
Af()f .20 log()Hf()z()f Hs()z

.k2 z

z k1
As()f .20 log()Hs()z()f

0 2 4 6 8 10
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
itu

de
(d

B
)

The following code segment performs the AGC function:

mag = sqrt(Samp.x*Samp.x + Samp.y*Samp.y);
if(mag > m_AGCave)

m_AGCave = (1.0-1.0/250.0)*m_AGCave + (1.0/250.0)*mag;
else

m_AGCave = (1.0-1.0/1000.0)*m_AGCave + (1.0/1000.0)*mag;
if(m_AGCave >= 1.0) // divide signal by ave if not almost zero
{

m_BitSignal.x /= m_AGCave;
m_BitSignal.y /= m_AGCave;
m_FreqSignal.x /= m_AGCave;
m_FreqSignal.y /= m_AGCave;

}

3.9. Frequency Error Detection/Correction
The first attempt at frequency control used a modified Costas loop PLL in order to achieve coherent
signal detection5. The method worked for BPSK but required a very narrow bandwidth loop filter in order
to lock on QPSK signals. This work was abandoned in favor of wideband frequency locking and non-
coherent PSK detection. Any benefits that coherent detection would have gained would probably be lost
in the HF environment.
The AFC is now performed by calculating the slope of the frequency within the frequency error filter
bandwidth and essentially moving the NCO center frequency so that the frequency peak(if one exists) is
at the center frequency. The phase of the signal is the arctan(I(t)/Q(t)). Since frequency is the derivative
of phase, the signal frequency is just the derivative of the arctan function.
The following Mathcad simulation shows this relationship using two different frequency signals.

F1 1 F2 1.5

I1()t cos()...2 π F1 t I2()t cos()...2 π F2 t
Q1()t sin()...2 π F1 t Q2()t sin()...2 π F2 t
in1()t I1()t Q1()t in2()t I2()t Q2()t

0 0.2 0.4 0.6 0.8

2

2
Input Signals 1 and 2

Seconds

A
m

pl
itu

de in1()t

in2()t

t

12/28/99 Moe Wheatley, AE4JY 21

θ1()t atan
Q1()t

I1()t
θ2()t atan

Q2()t

I2()t

0 0.05 0.1 0.15

1

2
Phase of Signals 1 and 2

Seconds

R
ad

ia
ns

θ1()t

θ2()t

t

ω1()t d

d t
θ1()t ω2()t d

d t
θ2()t

0 0.05 0.1 0.15

5

10
Frequency of Signals 1 and 2

Seconds

R
ad

ia
ns

/s
ec ω 1()t

ω 2()t

t

From a dusty calculus book6 the following identity was obtained that gives the signal frequency as a
function of the I and Q signals and their derivatives without the use of the atan() function.

d

d t
atan

Q()t

I()t
= .1

1
Q()t

I()t

2

d

d t

Q()t

I()t

=

.I()t
d

d t
Q()t .Q()t

d

d t
I()t

I()t 2 Q()t 2

If the magnitude of the I/Q signal is adjusted to always be equal to one by the use of some AGC, then the
denominator can be ignored. This allows the implementation of the frequency detector to be
implemented using two differentiators as shown in the following:

12/28/99 Moe Wheatley, AE4JY 22

d Q(t)
dt

Differentiator

Phase
Derived
Error
Signal

z-1

z-1

-

Q(t)

I(t)

z-1

z-1

-

d I(t)
dt

Differentiator

w(t)+

-

 if >
Limit

IIR
LP Filter

Frequency
Error
Signal

The IIR LP filter are the same type as used in the AGC section with different time constants.

0 3 6 9 12 15

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
itu

de
(d

B
)

The transfer function for the differential frequency error block was obtained experimentally and is plotted
below. It is interesting to note the dip in the function around +/- 16 Hz on the idle(180 deg. shifting)
signal. This is due to the two frequency components of the idle signal. As long as the error signal doesn't
change sign at this dip, the loop will still lock correctly at the center frequency. The slope of the transfer
functions change due to the presence of noise. This is due to the AGC acting on the noise and reducing
the actual signal level, which as was shown earlier, must remain relatively constant in order for this
frequency detector scheme to work. The noise level plotted here is right at the threshold of signal
detection, so is worst case.

12/28/99 Moe Wheatley, AE4JY 23

Frequency Error vs Various Signal Conditions

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
Frequency Error

QPSK with Noise

QPSK No Noise

Idle No Noise

Idle with Noise

The differential frequency error was originally used to correct the master NCO by itself. Now a secondary
phase derived error signal is used once the error gets within 3 Hz. The differential frequency error signal
is used when the error signal is large, then the phase derived frequency error kicks in when the error
becomes small.
This secondary error signal is derived from the difference angle of the baseband signal (described later).
This error signal is generated by how far from the ideal 0 or π phase position the signal is. If the
frequency is off, then the phase difference of the PSK31 signal will be rotated from the ideal position and
an error metric can be derived. This method can only be used for a very narrow range of a few Hz and so
is only used once the main frequency error has dropped within 3 Hz.

The following is a code snippet from the AFC control:

ferror = (IQ.x - m_z2.x) * m_z1.y - (IQ.y - m_z2.y) * m_z1.x;
m_z2.x = m_z1.x;
m_z2.y = m_z1.y;
m_z1.x = IQ.x;
m_z1.y = IQ.y;
if(ferror > .15) //clamp range

ferror = .15;
if(ferror < -.15)

ferror = -.15;
// error at this point is abt .016 per Hz error
#define FERRLPK (3000.0) //freq erro LP filter time constant
#define FERRLPG (4) // freq filter Gain constant(1/4)
#define FCROSS (.048) //freq where changes to using phase derived freq error
#define FEMIN (FCROSS/FERRLPG)
if((m_FerAve < -FEMIN) || (m_FerAve > FEMIN)) //if error >FEMIN then use ferror

m_FerAve = (1.0-1.0/FERRLPK)*m_FerAve + (1.0/(FERRLPG*FERRLPK))*ferror;
else //else use phase derived error
{

if((m_QFreqError > -FCROSS) && (m_FerAve <= 0.0))
m_FerAve = (1.0-1.0/FERRLPK)*m_FerAve + (1.0/(FERRLPG*FERRLPK))*m_QFreqError;

else
m_FerAve = (1.0-1.0/FERRLPK)*m_FerAve + (1.0/(FERRLPG*FERRLPK))*ferror;

if((m_QFreqError < FCROSS) && (m_FerAve >= 0.0))
m_FerAve = (1.0-1.0/FERRLPK)*m_FerAve + (1.0/(FERRLPG*FERRLPK))*m_QFreqError;

else
m_FerAve = (1.0-1.0/FERRLPK)*m_FerAve + (1.0/(FERRLPG*FERRLPK))*ferror;

}

12/28/99 Moe Wheatley, AE4JY 24

3.10. Symbol Synchronization
The next level of synchronization is to find the center of each symbol in order to sample it at the optimum
time. Several schemes were tried with varying success. The classic early-late synchronizer was tried that
integrates the signal energy over part of the symbol time and then again with a small time delay. An error
signal can be obtained that is fed back to adjust a symbol clock. This works but had problems with noisy
QPSK signals. Another method was tried using an algorithm that selectively finds the peaks and valleys
in each I and Q signal7. This method worked OK but was complicated. As a side benefit it could provide
a good signal quality metric that worked well with very noisy signals. However, the final method chosen
was a simple method that seems to work quickly and well is shown by the following diagram.

LP Filter (0)

LP Filter (1)

LP Filter (2)

LP Filter (19)

I + Q2 2I(t)

Q(t)

Separate Filter For Each Sample
Time Within a Sample Period

Symbol Period
Counter and index
Generator

Energy
Peak
Selector

Bit Center
Sample Time

There are about 20 samples per symbol at the 612.5 Hz. Sample rate. The energy in the input signal at
each sample time is individually filtered and stored in a filter array. At each symbol period of .032
seconds, the filter that has the most energy is selected and the sample point associated with this sample
is assumed to be the center of the data symbol.
The LP filters are again the simple IIR's with the following characteristics:

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
itu

de

0 1 2 3 4 5 6
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
itu

de
(d

B
)

12/28/99 Moe Wheatley, AE4JY 25

The following is a segment from the bit sync routine:

energy = (sample.x*sample.x) + (sample.y*sample.y);
m_SyncAve[BitPos] = (1.0-1.0/100.0)*m_SyncAve[BitPos] + (1.0/100.0)*energy;
if(BitPos == m_PkPos) // see if at middle of symbol
{

Trigger = TRUE;
pDoc->m_SyncHist[m_PkPos] = (INT)(10000.0*m_SyncAve[m_PkPos]);

}
else
{

Trigger = FALSE;
pDoc->m_SyncHist[BitPos] = (INT)(7000.0*m_SyncAve[BitPos]);

}
if(BitPos == HALF_TBL[m_PkPos]) //don't change pk pos until

m_PkPos = m_NewPkPos; // halfway into next bit.
BitPos++;
m_BitPhasePos += (m_BitPhaseInc);
if(m_BitPhasePos >= Ts)
{ // here every symbol time

m_BitPhasePos -= Ts; //keep phase bounded
BitPos = 0;
max = -1e10;
for(INT i=0; i<19; i++) //find maximum energy pk
{

energy = m_SyncAve[i];
if(energy > max)
{

m_NewPkPos = i;
max = energy;

}
}
m_LastPkPos = m_PkPos;

}
m_BitPos = BitPos;

3.11. Squelch Function
To implement a squelch function, a measure of signal quality is needed. It was hoped that by using some
statistical measures on the symbol sample bin energies, that a squelch function could be derived.
Unfortunately, the distribution on these bins does not change very much until the signal gets very noisy.
What is needed is a more linear measure of signal quality. The answer came by looking at the vector
display of Peter's PSKsbw program. Visually one can see how good the signal is by noticing how the
incoming signal vectors are distributed. A strong signal has most of the vectors tightly distributed around
the perpendicular axis. A noisy signal will have a wide distribution around the axis. By creating a
histogram of the incoming signal angles and looking at the average deviation that they take from the
"ideal" 0, 90, -90, and 180 positions, one can extract a signal proportional to signal quality. In order to
use the same algorithm for BPSK and QPSK, only the vectors around 0 and 180 degrees are analyzed.
First, the incoming signal difference angle must be found. The direct approach would be to just take the
arctan(Q/I) and subtract the previous arctan(Q/I) from it to get the difference angle.

-

Symbol
Time
Delay

+atan(Q/I)
I(t)

Q(t)

Difference
Angle

12/28/99 Moe Wheatley, AE4JY 26

This method has a couple of problems. One is that if I(t) is zero things blow up. Second, there must be
extra logic to do the subtraction since the atan function doesn't return a nice 0 to 360 degree range. One
must keep track of which quadrant the vectors are in and subtract accordingly.
A different approach is used that creates a third vector whose angle is the difference angle but does not
use the atan function. This vector is created geometrically and so does not suffer from the discontinuities
of the transcendental atan() function. The atan function can now be used on this new vector to find it's
angle directly. The atan function can still blow up but only if both I and Q are zero which is less likely to
occur.
To create this third difference vector one simply multiplies the current sample I,Q vector by the complex
conjugate of the previous I,Q vector.

Yk
= .Ak e

.j θk
Yk 1

= .Ak 1 e
.j θk 1

Y k 1
= .Ak 1 e

.j θk 1

Zk
= .Yk Y k 1

= ..Ak Ak 1 e
j θk θk 1

Zk
= Vector whose angle is the difference between the original vectors.

In terms of the complex coordinates I and Q,

Zk
= .Yk Y k 1

= .Ik jQk Ik 1 jQk 1

= .Ik Ik 1
.Qk Qk 1 j .Qk Ik 1

.Ik Qk 1

12/28/99 Moe Wheatley, AE4JY 27

In diagram form this implementation is show below.

Q(t) z-1

I(t) z-1

-

+

+ atan() Difference
Angle

Q(t)

I(t)

+

In actuality, a 'C' function atan2(y,x) is used to obtain the angle. It returns a value from –PI to +PI. This
still causes some grief if one wants to create a histogram of angles around 0 and around PI(0 and
180deg). If one swaps I and Q, the affect is to map 0 and 180 degrees to +/- 90 degrees. This translates
the two ranges of interest(-PI/4 to PI/4 and 3PI/4 to 5PI/4), into the new ranges of PI/4 to 3PI/4, and 5PI/4
to 7PI/4.

Q

I
Pi

-Pi

0

atan2(Q/I)

I

2Pi0
Q

atan2(I/Q) + PI

Pi/4 to 3Pi/4
(range around
180 deg.)

5Pi/4 to 7Pi/4
(range around
0 deg.)

12/28/99 Moe Wheatley, AE4JY 28

The basic signal quality scheme is then implemented as follows:

angle - Pi/2

Pi/4 to
3Pi/4

 if
range

5Pi/4 to
7Pi/4

Difference
Angle

angle - 3Pi/2

 if >
Limit

Force
Squelch
Off

IIR LP Filter

 if >
Limit

Force
Squelch
On

Signal
Quality
Output

|Abs |

|Abs |

"180 deg"
Counter

"0 deg"
Counter

++
Secondary
Frequency
Error

If the incoming difference angle is in the "ZERO" range, the absolute value of the angle and Pi/2 is found.
If the incoming difference angle is in the "180 degree" range, then the absolute value of the angle and
3Pi/2 is found. The two values are added together and run through a low pass filter. This is a measure of
how far away from the ideal the angle is, and is used for squelch control and signal quality display.

Peter Martinez specified a feature into the PSK31 signal scheme in which each transmission should begin
with a string of at least 32 consecutive 180 degree shifting "idle" symbols and also each transmission
should end with a string of 32 consecutive 0 degree non-shifting symbols(steady carrier). The reason
was twofold. The beginning idle string gives the decoders a chance at synchronization before any data is
sent. It can also be used for squelch functions to indicate a transmission is starting. The trailing carrier
can also be used to deactivate the squelch since a string of 32 "0 degree" symbols cannot occur during
any data transmission.

In WinPSK two counters are used to count consecutive idle characters and solid carrier symbols. If either
reaches it's limit, it bypasses the normal slow acting signal quality signal and forces the squelch either on
or off. This gives a much quicker acting squelch under good signal conditions.

12/28/99 Moe Wheatley, AE4JY 29

Signal Quality vs SNR

0

0.1

0.2

0.3

0.4

0 10 20 30 40

Relative SNR(dB)

Q
u

al
it

y QPSK
BPSK
Idle

Note how the QPSK signal with very high SNR still has a lower quality signal. This is due to ISI from the
bit filter giving the signal some phase jitter.

This block is also used to derive the secondary frequency error signal that is used along with the main
differential frequency error generator to lock onto the center frequency. The error signal is taken from the
signal quality block before the absolute value function and IIR filter. This signal then has the sign and
magnitude information that can be used to nudge the main mixer NCO toward the true center frequency.
This error signal kicks in when the overall frequency error is less than 3 Hz.

12/28/99 Moe Wheatley, AE4JY 30

The following is the basic squelch/signal quality function:

if((angle >= PHZ_180_MIN) && (angle <= PHZ_180_MAX))
{ //look +/-45 deg. around 180 deg.

if((pDoc->m_pSettings->m_ModType == QPSK_MODE) && (pDoc->m_pSettings->m_UseLSB))
temp = PI2/4.0 - angle;

else
temp = angle - PI2/4.0;

m_QFreqError = (1.0/12.5)*temp; //normalize same as freq error
temp = fabs(temp);
if(temp < m_DevAve)

m_DevAve= (1.0-1.0/50.0)*m_DevAve + (1.0/(50.0))*temp;
else

m_DevAve= (1.0-1.0/100.0)*m_DevAve + (1.0/(100.0))*temp;
m_OffCount = 0;
if(m_OnCount > 20) // fast squelch counter

m_DevAve = 0.1;
else

m_OnCount++;
}
else

if((angle >= PHZ_0_MIN) && (angle <= PHZ_0_MAX))
{ //look +/-45 deg around 0 deg.

if((pDoc->m_pSettings->m_ModType == QPSK_MODE) && (pDoc->m_pSettings->m_UseLSB))
temp = 3*PI2/4.0 - angle;

else
temp = angle - 3*PI2/4.0;

m_QFreqError = (1.0/12.5)*temp; //normalize same as freq error
temp = fabs(temp);
if(temp < m_DevAve)

m_DevAve= (1.0-1.0/50.0)*m_DevAve + (1.0/(50.0))*temp;
else

m_DevAve= (1.0-1.0/100.0)*m_DevAve + (1.0/(100.0))*temp;
m_OnCount = 0;
if(m_OffCount > 20)

m_DevAve = 0.4;
else

m_OffCount++;
}

pDoc->m_SquelchLevel = 100 - (INT)(250.0*m_DevAve);
if(pDoc->m_SquelchLevel > pDoc->m_pSettings->m_SQThreshold)

pDoc->m_SquelchOn = TRUE;
else

pDoc->m_SquelchOn = FALSE;

12/28/99 Moe Wheatley, AE4JY 31

3.12. Symbol Decoding
The next step is to convert the I and Q signals back into the four possible symbols (two for BPSK). One
could use the difference angle as described in the squelch section and find the nearest 0, 90, -90, or 180
degree position and that would be the symbol to use in the decoder. This is actually implemented in
WinPSK and used if the user de-selects the following experimental symbol decoder.

An interesting book8 was written by Yuri Okunev that describes an algorithmic method of decoding
symbols using data over several symbol times that is claimed to have nearly the same performance as
the ideal coherent processing methods.
The following description will cause the math/DSP experts to cringe so one should go to the above
reference for a complete explanation.

Let all possible original transmitted signals over k-1 symbol times be:

S t SI t SQ ti i i() () cos() ()sin()= +ϕ ϕ Where i = 0,2,3…k-1 and ϕ is an initial unknown phase.

The received signal is x t S t n ti() () ()= + where n(t) is White Gaussian Noise.

The error probability will be minimum if the receiver picks the Signal Si(t) such that the following inequality
is correct for any i ≠ j.

x t SI t dt x t SQ t dt x t SI t dt x t SQ t dti

k T

i

k T

j

k T

j

k T

() () () () () () () ()
() () () ()

0

1 2

0

1 2

0

1 2

0

1 2+ + + +

∫ ∫ ∫ ∫








 +









 >









 +











Another way to look at it is to find the maximum value for all possibilities of Si(t) of the left side of the
inequality.

v x t SI t dt x t SQ t dti i

k T

i

k T

=








 +











+ +

∫ ∫() () () ()
((

0

1) 2

0

1) 2

The integrals can be split into separate integrals for each symbol time spanned by the process which in
this case is (k-1)T.

v x t SI t dt x t SI t dt x t SI t dt

x t SQ t dt x t SQ t dt x t SQ t dt

j j j
n k T

n k T

j
n T

nT

n k T

n k T

j j
n k T

n k T

j
n T

nT

n

= + +












+ + +

−

− +

−− −

−

−

− +

−

∫ ∫∫

∫ ∫

() () () () () ()

() () () () () ()

()

()

()()

()

()

()

()(

1

11

2

1

1− −

−

∫










k T

n k T

1

2

)

()

Now SI t wti i() cos()= + ∆θ the projection of S(t) on the real axis and SQ t wti i() sin()= + ∆θ
the projection of S(t) on the imaginary axis where ∆θ is the phase information for that symbol period.

12/28/99 Moe Wheatley, AE4JY 32

v x t wt dt x t wt dt x t wt dt

x t wt dt x t wt dt

j n k n k
n k T

n k T

n
n T

nT

n k T

n k T

n k n k
n k T

= + + + + +












+ + + + +

− + − +
−

− +

−− −

−

− + − +
−

∫ ∫∫ () cos() () cos() () cos()

()sin() ()sin()

() ()
()

()

()()

()

() ()
()

∆ ∆ ∆

∆ ∆

θ θ θ

θ θ

1 2

1

11

2

1 2

()

()()

()

...... ()sin()
n k T

n
n T

nT

n k T

n k T

x t wt dt
− +

−− −

−

∫ ∫∫ +












1

11

2

∆θ

For BPSK signals, ∆θ can be 0 or π.
For QPSK signals, ∆θ can be 0, π/2, -π/2, or π

3.12.1. BPSK

3.12.1.1. Maximum Likelihood Detector
For example let's look at a BPSK signal over 3 symbol times(k=0,1,2). The table shows all possible
signal variants.

(n-2) signal phase (n-1) signal phase (n) signal phase ∆θ at sample n
ωt ωt+0 ωt+0 0
ωt ωt+0 ωt+π π
ωt ωt+π ωt+0 π
ωt ωt+π ωt+π 0

Using trig identities and substituting all possible ∆θ's for a signal over k-1 symbol times, one can
represent the above in terms of the I(t) and Q(t) signals.

sin() sin()ω π ωt t+ = − cos() cos()ω π ωt t+ = −

so substituting all possible angle variants:

v x t wt dt x t wt dt x t wt dt

x t wt dt x t wt dt x t wt dt

n T

n T

n T

nT

n T

n T

n T

n T

n T

nT

n T

n T

1
2

1

11

2
2

2

1

11

2 2

0 0

0 0

= + + + +












+ + + + +












−

−

−−

−

−

−

−−

−

∫ ∫∫

∫ ∫∫

()cos() ()cos() ()cos()

()sin() ()sin() ()sin()

()

()

()()

()

()

()

()()

()

v x t wt dt x t wt dt x t wt dt

x t wt dt x t wt dt x t wt dt

n T

n T

n T

nT

n T

n T

n T

n T

n T

nT

n T

n T

2
2

1

11

2
2

2

1

11

2 2

0

0

= + + −












+ + + −












−

−

−−

−

−

−

−−

−

∫ ∫∫

∫ ∫∫

()cos() ()cos() ()cos()

()sin() ()sin() ()sin()

()

()

()()

()

()

()

()()

()

and so on for all 4 variants.

12/28/99 Moe Wheatley, AE4JY 33

Using the I and Q notation for the integrals one can simplify the equation sets.

I x t t dtn

n T

nT

= +
−
∫ () cos()

()

ω θ∆
1

Q x t t dtn

n T

nT

= +
−
∫ ()sin()

()

ω θ∆
1

[] []v I I I Q Q Qn n n n n n1 2 1

2

2 1

2
= + + + + +− − − − for ∆θ = 0 at sample time n

[] []v I I I Q Q Qn n n n n n2 2 1

2

2 1

2
= + − + + −− − − − for ∆θ = π at sample time n

[] []v I I I Q Q Qn n n n n n3 2 1

2

2 1

2
= − + + − +− − − − for ∆θ = π at sample time n

[] []v I I I Q Q Qn n n n n n4 2 1

2

2 1

2
= − − + − −− − − − for ∆θ = 0 at sample time n

Find the maximum of v1 to v4 and the highest probability ∆θ corresponding to that variant is used for the
received symbol.
WinPSK looks at all possible variants over 4 symbol periods. This involves looking at a total of 16
variants to make a decision on the BPSK symbol. The new symbol is shifted into a shift register and
when an inter-character sequence of two consecutive zeros is received, the complete character is
decoded back to ASCII by using a "reverse Varicode" lookup table.

Q

I

z-1z-1z-1

Q0 Q1 Q2 Q3

z-1z-1z-1

I0 I1 I2

 Symbol Period
Delay Elements

I3

4 Symbol
Period
Maximum
Likelyhood
Calculator
block

Varicode Decode
Look-up Table

Shift Register/logic

...

BPSK
Output
Bit

Decoded
Character

12/28/99 Moe Wheatley, AE4JY 34

The following is the code to extract the BPSK symbol from all 64 combinations of 4 symbols worth of
data:

v = pow(m_I3 + m_I2 + m_I1 + m_I0, 2) +
pow(m_Q3 + m_Q2 + m_Q1 + m_Q0, 2); // v[1] 0 deg.

max = v; symb = SYM_NOCHANGE;
v = pow(m_I3 - m_I2 + m_I1 + m_I0, 2) +

pow(m_Q3 + m_Q2 + m_Q1 + m_Q0, 2); // v[2] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 + m_I2 + m_I1 + m_I0, 2) +

pow(m_Q3 - m_Q2 + m_Q1 + m_Q0, 2); // v[3] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 - m_I2 + m_I1 + m_I0, 2) +

pow(m_Q3 - m_Q2 + m_Q1 + m_Q0, 2); // v[4] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 + m_I2 - m_I1 - m_I0, 2) +

pow(m_Q3 + m_Q2 - m_Q1 - m_Q0, 2); // v[5] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 - m_I2 - m_I1 - m_I0, 2) +

pow(m_Q3 + m_Q2 - m_Q1 - m_Q0, 2); // v[6] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 + m_I2 - m_I1 - m_I0, 2) +

pow(m_Q3 - m_Q2 - m_Q1 - m_Q0, 2); // v[7] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
v = pow(m_I3 - m_I2 - m_I1 - m_I0, 2) +

pow(m_Q3 - m_Q2 - m_Q1 - m_Q0, 2); // v[8] 0 deg.
if(v > max) { max = v; symb = SYM_NOCHANGE;}
//
v = pow(m_I3 + m_I2 + m_I1 - m_I0, 2) +

pow(m_Q3 + m_Q2 + m_Q1 - m_Q0, 2); // v[9] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 - m_I2 + m_I1 - m_I0, 2) +

pow(m_Q3 + m_Q2 + m_Q1 - m_Q0, 2); // v[10] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 + m_I2 + m_I1 - m_I0, 2) +

pow(m_Q3 - m_Q2 + m_Q1 - m_Q0, 2); // v[11] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 - m_I2 + m_I1 - m_I0, 2) +

pow(m_Q3 - m_Q2 + m_Q1 - m_Q0, 2); // v[12] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 + m_I2 - m_I1 + m_I0, 2) +

pow(m_Q3 + m_Q2 - m_Q1 + m_Q0, 2); // v[13] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 - m_I2 - m_I1 + m_I0, 2) +

pow(m_Q3 + m_Q2 - m_Q1 + m_Q0, 2); // v[14] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 + m_I2 - m_I1 + m_I0, 2) +

pow(m_Q3 - m_Q2 - m_Q1 + m_Q0, 2); // v[15] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
v = pow(m_I3 - m_I2 - m_I1 + m_I0, 2) +

pow(m_Q3 - m_Q2 - m_Q1 + m_Q0, 2); // v[16] 180 deg.
if(v > max) { max = v; symb = SYM_P180;}
return !symb; //bit is inverted symbol

3.12.2. QPSK

3.12.2.1. Maximum Likelihood example
For another example let's look at a QPSK signal over 2 symbol times(k=0,1). The table shows all
possible signal variants.

(n-1) signal phase (n) signal phase ∆θ at sample n
ωt ωt+0 0
ωt ωt+π/2 +π/2
ωt ωt-π/2 -π/2
ωt ωt+π π

One can use the following trig identities to find all variants with respect to I and Q.

12/28/99 Moe Wheatley, AE4JY 35

sin() sin()ω π ωt t+ = − cos() cos()ω π ωt t+ = −

sin() cos()ω
π

ωt t+ =
2

sin() cos()ω
π

ωt t− = −
2

cos() sin()ω
π

ωt t+ = −
2

cos() sin()ω
π

ωt t− =
2

[] []v I I Q Qn n n n1 1

2

1

2
= + + +− − for ∆θ = 0 at sample time n

[] []v I Q Q In n n n2 1

2

1

2
= + + −− − for ∆θ = +π/2 at sample time n

[] []v I Q Q In n n n3 1

2

1

2
= − + +− − for ∆θ = -π/2 at sample time n

[] []v I I Q Qn n n n4 1

2

1

2
= − + −− − for ∆θ = π at sample time n

Find the maximum of v1 to v4 and the highest probability ∆θ corresponding to that variant is used for the
received symbol.

WinPSK looks at all possible variants over 4 symbol periods. This involves looking at a total of 64
variants. Because the next step is to decode the incoming QPSK symbols using a soft Viterbi decoder,
the maximum of each symbol possibility(0, +90, -90, and 180 deg.) is calculated, normalized so that the
maximum is always equal to one, and -log() is taken to get a probability measure that the Viterbi decoder
can use as a metric in deciding the best decoding path as described next.

Q

I 4 Symbol
Period
Maximum
Likelyhood
Calculator
block

 Symbol Period
Delay Elements

Q3Q2Q1Q0

z-1 z-1 z-1

I3I2I1I0

z-1 z-1 z-1

SYM_00 likelyhood

SYM_01 likelyhood

SYM_10 likelyhood

SYM_11 likelyhood

3.12.2.2. Soft Viterbi Decoder
The Viterbi Decoder tries to reconstruct the original transmitted signal by looking at the sequence of
received signals and comparing it to all the possible transmitted sequences. The sequence(or path) that
has the best match is chosen to provide the best guess at a current data bit.
The process is similar to being lost in your car and you try to find out where you are on a map by
observing how far you have traveled, which way you have turned, etc. By looking at all possible roads
on the map with the same turns and distances that you've taken, you pick the roads that best match your
route and conclude where you are. Viterbi added a simplifying step where if two paths end up at the
same intersection, you pick the path with the best match at that point, and eliminate the other. The paths
that are left(survivors) are the only ones left in contention for future calculations.
The details of the Viterbi algorithm can be found in most communications books9 so it won't be discussed
in much detail here. Reference10 dedicates an entire chapter on this algorithm and reference11 provides a
good step by step description of the algorithm with lots of trellis drawings.

12/28/99 Moe Wheatley, AE4JY 36

WinPSK uses a modified implementation of a Viterbi decoder described in an article12 by Peter Martinez.
Soft decision capability was added and the path metrics converted from integer to floating point
representation.
Recall how the transmitted data is encoded using the following state machine. Note that 4 memory stages
plus the current data bit is used to form the output symbol. Every input bit causes the state machine to
transition to one of 16 possible states. The 2 bit output symbol is derived from the state and the input bit.

s0

s12 bit
Symbol

x3 x2x4 x1 Data bit IN

The Viterbi decoder uses the same encoder to try all possible transmitted combinations and calculate an
error metric based on how "far away" from each possibility the received symbol is.
The algorithm is executed at every symbol period with the most likely symbol metric contained in an
array(m_QPSKprob[]) whose indexed elements contain the value calculated by the symbol decoder.
These values are zero for the most likely symbol and a positive value for the other three symbols
depending on how confident the symbol decoder was in the decision.
For example:
m_QPSKprob[SYMB_00] = metric for SYMB_00 = 0.3
m_QPSKprob[SYMB_01] = metric for SYMB_01 = 0.0 (SYMB_01 is most likely symbol)
m_QPSKprob[SYMB_10] = metric for SYMB_10 = 0.4 (SYMB_10 is least likely symbol)
m_QPSKprob[SYMB_11] = metric for SYMB_11 = 0.1

The algorithm begins by filling two temporary 32 element arrays in the following manner.
The index into the arrays is all possibilities that the constraint length 5 encoder can have.(25=32)
For each possible index, a new path distance is computed by adding the existing survivor path distance
and the new symbol's error distance. A second array (bitestimates[]) gets the new bit pattern estimate
from the existing survivor paths plus the new bit combination being examined. The minimum of all the
path distances is kept for use later normalization.

for(i = 0; i < 32; i++) // calculate all possible distances
{ //lsb of 'i' is newest bit estimate

pathdist[i] = m_SurvivorStates[i / 2].Pathdistance + m_QPSKprob[ConvolutionCodeTable[i]];
if(pathdist[i] < min) // keep track of minimum distance

min = pathdist[i];
// shift in newest bit estimates
bitestimates[i] = ((m_SurvivorStates[i / 2].BitEstimates) << 1) + (i & 1);

}

The next step is to index through all the path distances and eliminate all the paths that reached the same
state but have higher path distances. The shortest path is copied into the survivor state array along with
the associated bit pattern estimate. Note also that the minimum value calculated earlier is subtracted
from the total path distance before being saved into the survivor array. This keeps the value from
growing over time and remain bounded.

12/28/99 Moe Wheatley, AE4JY 37

for(i = 0; i < 16; i++) //compare path lengths with the same end state
// and keep only the smallest path in m_SurvivorStates[].

{
if(pathdist[i] < pathdist[16 + i])

{
m_SurvivorStates[i].Pathdistance = pathdist[i] - min;
m_SurvivorStates[i].BitEstimates = bitestimates[i];

}
else
{

m_SurvivorStates[i].Pathdistance = pathdist[16 + i] - min;
m_SurvivorStates[i].BitEstimates = bitestimates[16 + i];

}
}

Finally the survivor state array bit estimates are examined 20 bits back in time, and the majority of ones or
zeros is used as the best estimate for the transmitted bit. If there is a tie, a fair "coin toss" is used to
guess at the bit. It has been shown that calculating over 4 or 5 times the constraint length does not
significantly improve performance of the Viterbi decoder.

ones = 0;
for(i = 0; i < 16; i++) // find if more ones than zeros at bit 20 position

ones += (m_SurvivorStates[i].BitEstimates&(1L << 20));
if(ones == (8L << 20))

return (rand() & 0x1000); //if a tie then guess
else

return(ones > (8L << 20)); //else return most likely bit value

12/28/99 Moe Wheatley, AE4JY 38

3.13. Display Signals
WinPSK provides several views of the received signal for use in tuning or for determining the quality. All
the display signals are calculated separately from the main receiver using a single worker thread to
process and plot the data. A single "TAB" control allows switching between several different types of
views using the same screen area.

3.13.1. FFT for Spectrum Display
A 2048 point FFT is implemented to obtain frequency information from the received signal. A slightly
modified version of Takuya OOURA's original radix 4 FFT software package was used to perform this
function. Log output and a Hanning windowing function was added. The data for the FFT is obtained
prior to down mixing so the frequency points do not move when changing receive frequency. The FFT
data sample rate is 5512..5 Hz so the frequency range is 0 – 2756 Hz with a resolution of about 2.7 Hz.
The decimation filter starts to roll off at about 2200 Hz so the display is limited from 100 to 2200 Hz.
Display zooming is performed by scaling the index into the FFT's output not by changing FFT size or
sample rate.
A standard amplitude vs frequency plot is available as well as a "Waterfall" type in which the amplitude is
displayed as intensity/color, the x axis is frequency, and the y axis is time.

3.13.2. Vector Display
A vector display similar to the one used in "PSKsbw" shows the incoming signal phase. It is overlayed on
top of the main spectral views. Because WinPSK works on blocks of symbols at a time, the display
throws up several vectors at once rather than one at a time. Also the amplitude of the vectors is constant
rather than changing with input signal amplitude.
This display is useful for seeing if a signal is BPSK(vertical vectors only) or QPSK(vertical and horizontal
vectors). It is also a good test to see if a signal is tuned exactly on frequency. WinPSK's AFC can be
fooled and so manual frequency adjustment may be required. Tweaking the frequency for true vertical an
horizontal vectors will assure frequency correctness if the AFC has problems on noisy or distorted
signals.

3.13.3. Input Signal
The Input signal view is just a scope-like view of the raw input signal prior to down mixing. It's main use is
to adjust the soundcard input level to keep from overloading the A/D. The trace color will change from
green to red on peaks that get within 3dB of the limit.

3.13.4. Sync histogram
The sync display graphically shows the energy histogram of the bit sync routine. The center of the bit
should be at the peak of this display and is shown as an extended line to distinguish it. This display is
interesting in that it can be used to show if the received signal bit rate is off frequency (Assuming your
own soundcard is on frequency).
If the bit center drifts noticeably, say 15 seconds to drift across the screen, then either yours or the
sending soundcard is off frequency by an amount greater than can be explained by simple crystal
inaccuracies. From observing several on the air signals it appears that the sample rates on some
soundcards is actually 11000 or maybe 11050 Hz instead of the standard 11025. My laptop suffers from
this problem and uses 11050 Hz instead of 11025 even though the driver is set to the correct frequency.
The WinPSK bit sync algorithm will track this off frequency signal but with a phase lag due to the filtering
and so the center of the bit is off causing receiver degradation on noisy signals.
As a countermeasure for this, a clock adjustment offset can be set in WinPSK to compensate for off
frequency soundcards. The value is in ppm(parts per million) and a rough estimate of the clock error is
calculated while receiving a strong signal and displayed in the program status bar. The problem with this
is knowing if it is your soundcard or the other guy's that is off.

12/28/99 Moe Wheatley, AE4JY 39

4. Windows Program Implementation

4.1. PC/Windows Implementation Issues
The implementation language C/C++ and Microsoft Visual C++ tools were chosen due to existing

familiarity and experience. The only real decision to make was whether to program the Windows
application using MFC(Microsoft Foundation Classes) or straight API (Application Programming Interface
) coding. MFC can provide a lot of functionality with little code but is much harder to customize and you
have to deal with the quirky MFC code. Using the API allows the programmer much more control over
what is going on but requires a lot of tedious coding to implement even the most basic functionality.

In the end, laziness overcame common sense and the MFC route was undertaken. Looking back
I'm still not sure it was the right decision. Perhaps when the hair grows back that I pulled out while
dealing with those inane classes, a more objective opinion will ensue.

4.2. Real Time Considerations
The first issue to resolve was how much processing could be done using a PC and Windows.

Obviously the basic DSP functions could be done since Peter's and other programs run fine under
Windows. One goal was to provide bigger signal displays with more resolution and range. Could this be
achieved in addition to all the underlying signal processing that had to occur?

Windows is NOT a real time operating system. The response time to any event such as mouse,
key, soundcard, or any other event, is not bounded or specified. It is within "spec" if your mouse
hesitates a few hundred milliseconds while your modem disconnects. This at first would seem to be a
death sentence for a signal processing application that must process thousands of samples per second
without missing a beat. The key to resolving this issue is buffering, lots and lots of buffering. As long as
the average processing time your program gets is more than the average amount of time required to
perform a task, buffering can be used to fill in the times while the processor is away doing other things.

There still is no guarantee that your application will not starve. Screen savers are probably the
most ill behaved applications around in this regard. Some CD rom device drivers and floppy disk drivers
can also consume way too much processor time. The best you can do is try to adjust your buffering to
ride through most of the processor interruptions. A couple of seconds worth of buffering is probably not
out of line. A couple hundred milliseconds may work if no other app is running and you don't move the
mouse around much or access the disk. Windows 2000 promises to allow more control over the
multitasking quantum times but don't hold your breath.

One feature added to Windows starting with Win95, was multitasking. This allows the
programmer to split up tasks into independent sections of code as if a separate processor was being
used to execute that task.(With a multiprocessor NT system that can actually be the case) One of the
biggest conceptual hurdles in moving from embedded or DOS applications to Windows applications is
dealing with the fact that your program is essentially called by the operating system based on messages
sent to it by the mouse, keyboard, etc. The use of multitasking threads allows one to write code that does
not rely on Windows message processing which is slow and unpredictable with respect to response time.

WinPSK uses two worker threads. One is used to read/write soundcard data and perform all the
DSP functions to receive and transmit PSK31 signals. The second thread is used to display signal
information graphically. This leaves the main process thread of the program to do the normal mouse,
keyboard, windows stuff.

4.3. Float vs. Integer Implementation
Another issue to decide is whether floating point math could be used instead of integer math for the DSP
algorithms. Floating point math makes the programming part much easier since overflow and underflow
issues diminish as well as built in functions to calculate sines and tangents and stuff are available. The
question is whether there is enough horsepower in a Pentium class processor to do such things. A
simple test program was written to compare the processing time of doing a simple DSP function, a FIR
filter. One thousand samples were run through a one thousand tap FIR using 32 bit integer, 16 bit
integer, single precision floating point, and double precision floating point math.

12/28/99 Moe Wheatley, AE4JY 40

// code segment for timing FIR function
#define TESTBUFSIZE 1000
typedef short TEST_TYPE;
//typedef int TEST_TYPE;
//typedef float TEST_TYPE;
//typedef double TEST_TYPE;
TEST_TYPE* pBuf1;
TEST_TYPE* pBuf2;
TEST_TYPE* pBuf3;
INT i,j;
TEST_TYPE acc;
acc = (TEST_TYPE)0;
for(i=0; i<TESTBUFSIZE; i++)
{

for(j=0; j<TESTBUFSIZE; j++)
{

acc = acc + pBuf1[i] * pBuf2[j];
}
pBuf3[i] = acc;

}

The following table presents the results on several different processors and operating systems.

Data Type 133 Pentium Win95 400 Pentium II Win98 500 Pentium III NT4.0
16 bit integer 114800 uSec 36200 uSec 29000 uSec
32 bit integer 99400 uSec 9100 uSec 7280 uSec
Float 45800 uSec 8850 uSec 7070 uSec
Double float 69500 uSec 17500 uSec 7110 uSec

From this it was found that single precision floating point is actually faster than integer arithmetic. This
sort of makes sense because a separate floating point unit runs in parallel with the main CPU. 16 bit
integer arithmetic is much slower than 32 bit probably because the native word size in the Pentium is 32
bits. WinPSK uses double precision floating math since there is not that big a hit in performance and
most of the library math functions use doubles for arguments.

4.4. PC Soundcard Settings
The PC soundcard can be set to various modes of operation. For WinPSK, the fundamental sample rate
was chosen to be 11025 Hz. This is a common sample rate that must be supported by any PC
soundcard running with Windows. Unfortunately, many soundcards do not implement the 11025 Hz
sample rate correctly and round it off to 11000 or 11050 Hz as discussed earlier.

The 16 bit mode is used for all soundcard I/O. This is the number of D/A, A/D resolution bits and should
not be confused with the BUS width of the soundcard which could be 8, 16, 32 bits depending on the
type. Also the single channel, mono, mode is used rather than stereo.

12/28/99 Moe Wheatley, AE4JY 41

4.5. Program Structure

4.5.1. Hierarchy Diagram

The following diagram shows the major C++ classes that form the WinPSK program. The base classes
are shown for those derived from Microsoft's Foundation Classes. The classes enclosed by dotted lines
are executed using separate worker threads.

Worker Thread #1

CSound

CPSKDet

CPlotData CIOCtrl

Cfft

CSplitterWnd

CRcvView
:CView

CRcvEditCtrl
:CRichEditCtrl

CWinPskView
:CFormViewCXmitView

:CView

CXmitEditCtrl
:CRichEditCtrl

CMacrodlg
:CDialog

CSquelchCtrl
:CWnd

CTheirCallCtrl
:CRichEditCtrl

CSettings

Worker Thread #2

CPSKMod

CWinPSKApp
:CWinApp

CWinPSKDoc
:CDocument

CMainFrame
:CFrameWnd

CDemoDlg
:CDialog

CSetDlg
:CDialog

12/28/99 Moe Wheatley, AE4JY 42

4.5.2. Class Descriptions
In order to become familiar with Windows programming, one needs to surround yourself with piles of
Windows programming books, use the online help reference, and download as many examples of
programs as you can. CodeGuru(CodeGuru.com) is one place that has lots of code examples for MFC.
Several others exist as well. There are several newsgroups that cater to Windows programming as well.
Below is a brief description of the major code blocks. The details of the code are not described here but
the code is fairly well documented for someone who is familiar with C++, Windows, and MFC. The code
is not textbook stuff so don't think this is the best implementation. This author is still struggling with the
basics of all this.

CWinPSKApp
Main Entry point for the program. Initializes the basic window's document-view classes and handles the
case of multiple program instances.

CMainFrame
Class provides the outer window frame with system and menu controls. It saves and restores the
program screen position and size settings to the registry. Screen setting menus and general program
setup dialogs are handled here as well as status bar functionality.

CDemoDlg
This dialog class is used to select a demonstration mode that does not use the soundcard but generates
a repeating character string and then decodes it. This useful for playing with the various program
features off line. A built in noise generator simulates AWGN with selectable amounts.

CSetDlg
This dialog class is used to enter some general user setup information.

CWinPSKDoc
This class is used primarily to store all sorts of program variables that need to be accessed from other
classes and threads. This is one of the few MFC's that are thread safe. Any class that has a Windows
message handler cannot be called by any thread except the main process thread.

CSettings
This class is just a structure that holds all the user program settings that need to be saved and restored to
disk. There are some class methods that save and restore the class to a file "Settings.dat" that is in the
program's path.

CSplitterWnd
This MFC class is used to provide three separate view areas on the program screen. The top view area
is for the received text, the middle area is for the transmitted text, and the bottom area holds the program
controls, data tuning plots, and macro controls.

CRcvView
A class to create and place the receive text control box in the top splitter window.

CRcvEditCtrl
A CRichEditCtrl derived class that is a read only edit box where all the received text is placed. It handles
word wrap, color keying, drag and drop, clipboard operations, etc.

CXmitView
A class to create and place the transmit text control box in the middle splitter window.

12/28/99 Moe Wheatley, AE4JY 43

CXmitEditCtrl
A CRichEditCtrl derived class that is an edit box where all the text to be transmitted is entered either by
typing, drag and drop, clipboard, or macro insertion. It handles word wrap, color keying, drag and drop,
clipboard operations, etc. As text is transmitted, it can be color coded to distinguish it from text that has
not yet been sent. Back spacing into unsent text deletes the text in the edit box. Back spacing into the
sent text string transmits a backspace character so the receiving end can delete the text after reception.

CWinPSKView
This is a CFormView derived class that is large and contains the bulk of the user controls and convoluted
logic to deal with the mouse, cursor, keyboard, and other windows functionality. This class spawns the
two classes that run separate worker threads for data viewing and also the main receive and transmit
algorithms. The user macro dialogs are also controlled from here. A TAB control is used to switch
between different data views.

CMacrodlg
A CDialog derived class for customizing the user macros which can place user specified text, or text files,
CW ID's, and automatic startup/shutoff commands into the transmit output stream.

CSquelchCtrl
A simple bar graph control that has a moveable threshold setting indicator that can be used to set the
squelch threshold. The bar changes color if the input level exceeds the threshold.

CTheirCallCtrl
A CRichEditCtrl derived class that can be used to type, drag, or paste, the other stations callsign into so
that the macro system can insert into the transmit output stream. It forces the text to upper case for
sending.

CPlotData
This class spawns a worker thread which is used to update the data view screen area that is selected by
a TAB control. The worker thread processes new incoming data and depending on the type of data view,
plots it onto the screen area. This thread is a low priority thread since it is not essential to PSK31 data
reception or transmitting.

Cfft
A class using code from a radix 4 FFT package written by Takuya Ooura. Very little was modified except
to window the incoming data and scale the output data.

CIOCtrl
This class spawns a worker thread which instantiates either the PSK detection or Modulation class
depending on the state of the Transmit/Receive button, and processes the soundcard data accordingly.
A separate class, CSound is used to talk to the soundcard. A routine to twiddle a couple of pins on a
serial port is used to provide a simple PTT function.

CSound
A general purpose class to either send or receive audio data from a PC soundcard. A callback function
and a signaling "EVENT" is used to maintain the audio buffers.

CPSKMod
The class that takes a text character and creates the PSK31 modulated audio signal. It is only active
while transmitting.

12/28/99 Moe Wheatley, AE4JY 44

CPSKDet
The class that takes the PSK31 audio samples from the soundcard and decodes it into a text stream.

4.6. Miscellaneous Software issues

4.6.1. FIR Filter implementation
All the FIR type filters use the same structure. An array containing the FIR coefficients and a circular
buffer structure with two pointers is used. New data samples are entered by decrementing the inptr and
placing the new sample into the FirQue at that position. Next the FIRptr is set to the new inptr position
and then the following is performed N times. For each coefficient pointed to by Kptr, the value pointed to
by FIRptr is multiplied together and added to an accumulator variable. After each MAC operation, both
pointers are incremented. Logic is added to deal with the circular buffer wrap around at the N-1 position
in the FirQue.

The following code segment shows the general method of implementation. For a decimation type FIR
filter, the MAC loop only needs to be performed at the new sample rate. For complex data, the MAC has
to be performed on both real and complex parts of the data.

for(i = 0; i<BlockSize; i++) // process Blocksize new samples
{

if(--Inptr < FirQue) //deal with wraparound
Inptr = FirQue +N-1;

*Inptr = pIn[i]; // enter new sample into Que
acc = 0.0;
Firptr = Inptr;
Kptr = CoefTable;
while(Kptr < (CoefTable + N)) //do the MAC's
{

acc += ((*Firptr++)*(*Kptr++));
if(Firptr >= FirQue +N) //deal with wraparound

Firptr = FirQue;
}
pOut[j++] = acc; //save output sample

}

0
1

2
3

N-1

N-2

K1

K0

K3

K(N-1)

Kptr
FirQue

CoefTable

FIRptr

Inptr

12/28/99 Moe Wheatley, AE4JY 45

4.6.2. Inter-Class Communication
A constant aggravation with Windows MFC programming is trying to communicate or access methods
between the various classes. It is easy to communicate into classes that were instantiated by the calling
class. Problems arise when trying to get information back through to the parents of the class. For
example the main view class can create and access classes that it creates but it is more difficult for the
"children" to talk back to their parents.(probably some deep metaphor here..) The best way is to try to
structure your program to minimize the need for back access to classes. If needed, one way to get
around this is to pass a pointer to the parent class on to the child class as a parameter during creation.
Sometimes this must be cast as a void* then recast back to the parent class to get around some
problems in the order in which include files are processed by the compiler.
Another communication problem is calling MFC class methods from worker threads. Most MFC classes
are not thread safe and will crash. Writing or reading text in an edit box from a worker thread will not
work. One way around this is to send a windows message from the worker class to the Windows class.
This method is used to transport character data to and from the DSP worker thread to the Window's edit
boxes for display. The Windows messaging system can have long response times and should not be
used for any high speed data traffic.

4.6.3. Processor Loading
The processor loading was measured using several methods. Windows NT has a performance monitor
that can show user and kernel processing loads for various processes. Visual Studio also has a code
profiler that can be used but is klunky and doesn't work very well.
Most measurements were taken using a system function that returns a 64 bit Pentium timer value that
can be used to "Timestamp" any place in code.
All the timing values here and commented in the code, are based on a 133 MHz Pentium. The following
table gives some average execution times of some major processing blocks.

Function Ave time Rate function is
Called

CPU Percentage

Decimate by 2 FIR 6 mS 2.69 Hz 1.6%
Total PSK Detection Function(BPSK) 12.5 mSec 2.69 Hz 3.4%
Total PSK Detection Function(QPSK) 16.7mSec 2.69 Hz 4.5%
Decimate by 3 #1 10 uSec 18375 Hz 1.8%
Decimate by 3 #2 13 uSec 612.5 Hz .8%
CalcBitFilter 25 uSec 612.5 Hz 1.5%
CalcAGC 9 uSec 612.5 Hz .5%
CalcFreqError 10 uSec 612.5 Hz .6%
SymbSync 8 uSec 612.5 Hz .48%
DecodeSymb(BPSK) 69 uSec 31.25 Hz .2%
DecodeSymb(QPSK) 522 uSec 31.25 Hz 1.6%

Plot Spectrum 22 mSec 2.69 Hz 5.9%
Plot Waterfall 20 mSec 2.69 Hz 5.4%
Plot Input 8 mSec 2.69 Hz 2.1%
Plot Sync 4.8 mSec 2.69 Hz 1.3%

Transmit Modulation(BPSK) 15 mSec 2.69 Hz 4%
Transmit Modulation(QPSK) 15 mSec 2.69 Hz 4%

A rough CPU % load value is displayed in the status bar of WinPSK for relative comparisons of different
CPUs. It does not take into account the main process thread or any system level processing times.

12/28/99 Moe Wheatley, AE4JY 46

Problems/Bugs/Issues

1. The receive Window scrolling functions leaves a lot to be desired. The current line many times
goes out of the scroll view. This requires clicking on the scroll bar to get it back inside the view
window. More hair pulling with the RichEditCtrl is needed.

2. The colors of the receive and transmit text sometimes get mixed up. See above comment.

3. The maximum likelihood detector does not appear to give any noticeable improvement in signal
reception. The added complexity is probably not justified.

4. This program was written to experiment with PSK31 reception techniques and so is not a feature
rich application. I have no plans to add much to it except maybe some bug fixes and minor
tweaks.

12/28/99 Moe Wheatley, AE4JY 47

5. References:
"Quoting one is plagiarism, quoting many is research"

1 Windows 95/98/NT are Registered Trademarks of Microsoft Corporation
2 Peter Martinez G3PLX. "PSK31: A new radio-teletype mode with a traditional philosophy"
3 Peter Martinez G3PLX. "PSK31 Fundamentals"
4 MathCad ver.6.0. MathSoft 101 Main St.,Cambridge, MA 02142
5 Marvin E. Frerking. "Digital Signal Processing in Communication Systems"p.444.

ISBN0-442-01616-6
6 George B. Thomas, Jr. "Calculus and Analytic Geometry" p.238
7 W.T. Webb and L. Hanzo "Modern Quadrature Amplitude Modulation" p.367

ISBN0-7273-1701-6
8 Yuri Okunev. "Phase and Phase Difference Modulation in Digital Communications" p.173-216

ISBN 0-89006-937-9
9 Bernard Sklar. "Digital Communications Fundamentals and Applications" ISBN 0-13-211939-0
10 "C. Britton Rorabaugh. "Error Coding Cookbook". P. 127 ISBN 0-07-911720-1
11 Tom McDermott, N5EG. "Wireless Digital Communications: Design and Theory"

ISBN 0-9644707-2-1
12 Peter Martinez G3PLX. "Description of the Half-Rate QPSK code proposed for the QPSK/FEC

Extension to PSK31"

