
PSKCore.DLL

Software Specification

and

Technical Guide

Ver. 1.41

September 24, 2008

by

Moe Wheatley, AE4JY
mwheatley@moetronix.com

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 2

1. Introduction... 3
2. PSKCore.dll Software Interface Specification..5

2.1. INITIALIZATION/SHUTDOWN FUNCTIONS .. 5
2.1.1 fnStartSoundCard.. 5
2.1.2 fnStartRXTXSoundCard .. 6
2.1.3 fnStartSoundCardEx ... 6
2.1.4 fnStopSoundCard.. 8

2.2. RECEIVE FUNCTIONS ... 8
2.2.1 fnEnableRXChannel .. 8
2.2.2 fnIsRXChannelActive .. 9
2.2.3 fnGetNumActiveRXChannels.. 10
2.2.4 fnSetRXFrequency .. 10
2.2.5 fnSetRXPSKMode.. 11
2.2.6 fnGetRXFrequency.. 11
2.2.7 fnSetFFTMode ... 12
2.2.8 fnGetFFTData... 12
2.2.9 fnGetClosestPeak.. 13
2.2.10 fnGetSyncData... 13
2.2.11 fnGetVectorData .. 14
2.2.12 fnGetRawData.. 14
2.2.13 fnSetAFCLimit ... 15
2.2.14 fnSetSquelchThreshold .. 15
2.2.15 fnGetSignalLevel ... 16
2.2.16 fnRewindInput ... 16

2.3. TRANSMIT FUNCTIONS... 17
2.3.1 fnStartTX.. 17
2.3.2 fnStopTX .. 17
2.3.3 fnAbortTX... 18
2.3.4 fnSetTXFrequency... 18
2.3.5 fnSetCWIDString.. 18
2.3.6 fnSendTXCharacter ... 19
2.3.7 fnSendTXString ... 19
2.3.8 fnGetTXCharsRemaining .. 20
2.3.9 fnClearTXBuffer... 20
2.3.10 fnSetCWIDSpeed ... 20
2.3.11 fnSetComPort .. 21

2.4. MISCELLANEOUS FUNCTIONS... 22
2.4.1 fnSetClockErrorAdjustment.. 22
2.4.2 fnGetDLLVersion... 22
2.4.3 fnGetErrorString.. 22
2.4.4 fnSetInputWavePath.. 23
2.4.5 fnSetOutputWavePath... 23

2.5. USER WINDOW'S MESSAGE DEFINITIONS ... 24
2.5.1 MSG_DATARDY... 24
2.5.2 MSG_PSKCHARRDY... 24
2.5.3 MSG_STATUSCHANGE... 24
2.5.4 MSG_IMDRDY .. 25
2.5.5 MSG_CLKERROR.. 25

3. Technical Operation Description ..27
3.1. PSK31 SIGNAL GENERATION .. 27
3.1.1 Input Characters.. 27
3.1.2 Varicode Encoding.. 27
3.1.3 BPSK Serialization .. 29
3.1.4 QPSK Serialization .. 29
3.1.5 Differential Phase Shift encoding... 30
3.1.6 Wave Shaping and Carrier Generation... 31
3.1.7 Power Spectrum .. 35

3.2. PSK31 SIGNAL DETECTION ... 36
3.2.1 Block Diagram ... 36
3.2.2 Soundcard Input.. 37
3.2.3 Complex Mixer... 37
3.2.4 Decimation by 16... 38
3.2.5 Matched Data Bit filter... 39
3.2.6 Frequency Error Filter... 40
3.2.7 AGC.. 40
3.2.8 Frequency Error Detection/Correction... 42
3.2.9 Symbol Synchronization... 45
3.2.10 Squelch Function .. 46
3.2.11 IMD Measurement.. 50
3.2.12 Symbol Decoding .. 53

4. Further References and Acknowledgments...56

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 3

1. Introduction
PSK31 is an amateur radio communications mode introduced by Peter Martinez, G3PLX, that uses phase modulation and
special character coding. It allows robust narrow bandwidth keyboard “Chat” type communications between two or more
stations.

This document describes the programming interface to a DLL(Dynamic Link Library) that can be used for receiving and
transmitting PSK31 signals using a Windows soundcard. The DLL is a 32 bit Regular DLL written using Visual C++ and
MFC. The user sends and receives data and status via calls to various routines exposed by the DLL. Custom User
Windows messages are sent from the DLL to the application for notification of events that require action by the application
program.
The DLL is made available free of charge for amateur radio use only.

Key DLL Features:
 Interfaces to various applications environments including C, Visual C++, Visual Basic, and Delphi.

 Multiple soundcard support.

 Allows multiple independent receiver channels(1 to 50).

 Ability to enable and disable receive channels while running.

 Threshold adjustable noise activated squelch control.

 PSK31 Signal strength/quality value available for squelch and display.

 Soft decision Viterbi decoder for QPSK mode

 Symbol Vector tuning data for phase type display.

 Frequency Spectrum data available for Display 0 to 4000 Hz with 3.9Hz resolution.

 Log or 4th root frequency spectrum data formats.

 Raw soundcard data mode.

 S/N qualified IMD measurement data.

 Soundcard clock error measuring and compensating capability.

 Includes Serial COM port RTS and/or DTR PTT control.

 CW ID capability with multiple speed selections.

 32000 character transmit buffer.

 Full duplex Tx and RX mode can be invoked.

 A fast AFC mode can be used to track doppler shifting BPSK signals up to +/-20Hz/Sec.

 Ability to read and write to RIFF PCM wave files for decoding or storing raw audio.
 Double/Quad Speed BPSK and QPSK(PSK63 and PSK125).

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 4

Basic DLL Software Structure

CSound

Worker Thread

CPSKMod

CIOCtrl

CPSKDet

CWave

32 bit Regular DLL Application Interface

CPSKCoreApp
:CWinApp

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 5

2. PSKCore.dll Software Interface Specification

2.1. Initialization/Shutdown Functions

2.1.1 fnStartSoundCard

VC++ Prototype:
long __stdcall fnStartSoundCard(HWND hWnd, long cardnum, long numRXchannels);

VB Prototype:
Declare Function fnStartSoundCard Lib "PSKCore.dll" (ByVal hWnd As Long, ByVal cardnum As Long, ByVal
numRXchannels As Long) As Long

Delphi Pascal Prototype:
function fnStartSoundCard(h_Wnd: hWnd; cardnum, numRXchannels: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 hWnd - A Handle to the Window that is to receive the DLL's messages.

 cardnum - soundcard ID to use(0 to 15, -1 for Windows default)

 numRXchannels - Maximum number of Receive channels ever to be used(1-50). All are active unless the
function fnEnableRXChannel(chan,enable) is called first to make some inactive.

Return Value:
Returns a long value indicating error status.
0 = No error in starting sound card process.
10 = Memory Allocation error
11 = Tried to read and soundcard is not open
12 = Input buffers over-flowed
13 = Timed out waiting for input buffers
14 = Tried to write and soundcard is not open
15 = Output buffers under-flowed
16 = Timed out waiting for output buffers
17 = Card doesn't support 16bit, 8000Hz, Mono format
18 = Still something playing on soundcard
19 = Header not prepared
20 = Device is synchronous
21 = Bad Device ID, Soundcard Not Present
22 = Driver failed to enable
23 = Device already allocated
24 = Device handle is invalid
25 = No device driver present
26 = Function isn't supported
27 = Error value out of range
28 = Invalid flag passed
29 = Invalid parameter passed
30 = Handle being used
31 = Driver does not call DriverCallback
32 = Registry error
33 = Unknown Error

Comments:
Call this function to start up the soundcard process and begin processing PSK data.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 6

2.1.2 fnStartRXTXSoundCard

VC++ Prototype:
long __stdcall fnStartSoundCard(HWND hWnd, long RXcardnum, long TXcardnum, long numRXchannels);

VB Prototype:
Declare Function fnStartSoundCard Lib "PSKCore.dll" (ByVal hWnd As Long, ByVal RXcardnum As Long, ByVal
TXcardnum As Long, ByVal numRXchannels As Long) As Long

Delphi Pascal Prototype:
function fnStartSoundCard(h_Wnd: hWnd; Rxcardnum, TXcardnum, numRXchannels: integer): integer; stdcall; external
'pskcore.dll';

Parameters:
 hWnd - A Handle to the Window that is to receive the DLL's messages.

 RXcardnum - soundcard input ID to use (0 to 15, -1 for Windows default)

 TXcardnum - soundcard output ID to use (0 to 15, -1 for Windows default)

 numRXchannels - Maximum number of Receive channels ever to be used(1-50). All are active unless the
function fnEnableRXChannel(chan,enable) is called first to make some inactive.

Return Value:
Returns a long value indicating error status.
0 = No error in starting sound card process.
10 = Memory Allocation error
11 = Tried to read and soundcard is not open
12 = Input buffers over-flowed
13 = Timed out waiting for input buffers
14 = Tried to write and soundcard is not open
15 = Output buffers under-flowed
16 = Timed out waiting for output buffers
17 = Card doesn't support 16bit, 8000Hz, Mono format
18 = Still something playing on soundcard
19 = Header not prepared
20 = Device is synchronous
21 = Bad Device ID, Soundcard Not Present
22 = Driver failed to enable
23 = Device already allocated
24 = Device handle is invalid
25 = No device driver present
26 = Function isn't supported
27 = Error value out of range
28 = Invalid flag passed
29 = Invalid parameter passed
30 = Handle being used
31 = Driver does not call DriverCallback
32 = Registry error
33 = Unknown Error

Comments:
Call this function to start up the soundcard process where independent input and output IDs are required (e.g. on
Windows Vista) and begin processing PSK data.

2.1.3 fnStartSoundCardEx

VC++ Prototype:
long __stdcall fnStartSoundCardEx(HWND hWnd, long cardnum, long numRXchannels , long IOMode);

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 7

VB Prototype:
Declare Function fnStartSoundCardEx Lib "PSKCore.dll" (ByVal hWnd As Long, ByVal cardnum As Long, ByVal
numRXchannels As Long, ByVal IOMode As Long) As Long

Delphi Pascal Prototype:
function fnStartSoundCard(h_Wnd: hWnd; cardnum, numRXchannels, IOMode: integer): integer; stdcall; external
'pskcore.dll';

Parameters:
 hWnd - A Handle to the Window that is to receive the DLL's messages.
 cardnum - number of soundcard to use(0 to 3) (use -1 to let the system locate the soundcard)
 numRXchannels - Maximum number of Receive channels ever to be used.(1-50)). All are active unless the

function fnEnableRXChannel(chan,enable) is called first to make some inactive.
 IOMode - Specifies Soundcard and Wave File Input/Output Mode to use.(all zeros is soundcard default)

Bit 0 (1==Audio Input read from Wave File) (0==Audio From Soundcard)
Bit 1 (1==Input saved to Wave File) (0== Input NOT saved to Wave File)
Bit 2 (1==Audio Output(Tx) to Wave File) (0==Audio Out not saved to Wave File)
Bit 3 (1==Audio Output NOT sent to soundcard) (0==Audio Output(Tx) to Soundcard)
Bit 4 (1==Echo Input to soundcard Output) (0==No Input Echo to Soundcard output)

Return Value:
Returns a long value indicating error status.
0 = No error in starting sound card process.
10 = Memory Allocation error
11 = Tried to read and soundcard is not open
12 = Input buffers over-flowed
13 = Timed out waiting for input buffers
14 = Tried to write and soundcard is not open
15 = Output buffers under-flowed
16 = Timed out waiting for output buffers
17 = Card doesn't support 16bit, 8000Hz, Mono format
18 = Still something playing on soundcard
19 = Header not prepared
20 = Device is synchronous
21 = Bad Device ID, Soundcard Not Present
22 = Driver failed to enable
23 = Device already allocated
24 = Device handle is invalid
25 = No device driver present
26 = Function isn't supported
27 = Error value out of range
28 = Invalid flag passed
29 = Invalid parameter passed
30 = Handle being used
31 = Driver does not call DriverCallback
32 = Registry error
33 = Unknown Error
34= can't open wave file for input
35= file is not a RIFF wave type
36= Invalid wave file
37= no data in file
38= not a supported data type
39= Error reading data from file
40= tried to read and file is not open
41= can't open wave file for output
42= error writing to wave file
43= tried to write and file is not open

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 8

Comments:
Call this function to start up the soundcard process and begin processing PSK data. If a wave file is
specified as an input or output, then it MUST be setup first by calling the fnSetInWavePath(…) and/or
fnSetOutWavePath(…) BEFORE calling fnStartSoundCardEx(..)

2.1.4 fnStopSoundCard

VC++ Prototype:
void __stdcall fnStopSoundCard();

VB Prototype:
Declare Sub fnStopSoundCard Lib "PSKCore.dll" ()

Delphi Pascal Prototype:
procedure fnStopSoundCard; stdcall; external 'pskcore.dll';

Parameters:
none.

Return Value:
None.

Comments:
Call this function to stop the soundcard(and/or Wave File) process and stop processing PSK data.
This must be called before exiting your program to ensure all the threads and resources are de-allocated.

Examples
Examples of how to use the fnStartSoundCard, fnStopSoundCard, and fnEnableRXChannel functions to manage
multiple receiver channels:

To use a fixed number of three receive channels:
fnStartSoundCard(hWnd, -1, 3) //Starts up 3 active channels(0,1,and 2)
.
.
fnStopSoundCard(); //Stops all three channels(0,1,and 2) and the soundcard

To use a variable number of receive channels up to a maximum of 20:
fnEnableRXChannel(0,TRUE); //Select channel 0 as active
fnEnableRXChannel(4,TRUE); //Select Channel 4 as active
.
fnStartSoundCard(hWnd, -1, 20) //Starts up only channels 0 and 4 out of total of 20 possible
.
fnEnableRXChannel(4,FALSE); //Turn off Channel 4
.
fnEnableRXChannel(2,TRUE); //Make Channel 2 active
.
fnStopSoundCard(); //Stops all active channels(0 and 2), and the soundcard
.
fnStartSoundCard(hWnd, -1, 20) //Starts up only channels 0 and 2 out of total of 20 possible

2.2.Receive Functions

2.2.1 fnEnableRXChannel

VC++ Prototype:
long __stdcall fnEnableRXChannel(long chan, long enable);

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 9

VB Prototype:
Declare Function fnEnableRXChannel Lib "PSKCore.dll" (ByVal channel As Long, ByVal enable As Long) As Long

Delphi Pascal Prototype:
function fnEnableRXChannel(channel, enable: integer); integer; stdcall; external 'pskcore.dll';

Parameters:
 channel = Receive channel to enable or disable(0 to 49)
 enable = TRUE(non-zero) to enable Rx channel, FALSE(zero) to disable Rx channel

Return Value:
error = ZERO if operation successful. Error code 10(Memory Allocation error) if operation failed.

Comments:
Called to enable or disable a specified receive channel. The channel number parameter specifies which channel

to enable or disable. This parameter is used to identify which channel is being accessed by the various functions that
modify or obtain data from a receive channel. This new channel will immediately become active if the soundcard or wave
file process is running. More channels use up more CPU time so create only as many as needed. With a 133MHz
Pentium CPU, 15 to 20 channels is about maximum.

2.2.2 fnIsRXChannelActive

VC++ Prototype:
long __stdcall fnIsRXChannelActive(long chan);
VB Prototype:
Declare Function fnIsRXChannelActive Lib "PSKCore.dll" (ByVal channel As Long) As Long

Delphi Pascal Prototype:
function fnIsRXChannelActive (channel: integer); integer; stdcall; external 'pskcore.dll';

Parameters:
 channel = Receive channel to query (0 to 49)

Return Value:
active = FALSE(zero) if channel is NOT active, TRUE(non-zero) if channel is active.

Comments:
Called to check to see if a receive channel is currently active. The channel parameter specifies which channel to

query. Returns TRUE(non-zero) if the channel is active, FALSE(zero) if not active.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 10

2.2.3 fnGetNumActiveRXChannels

VC++ Prototype:
long __stdcall fnGetNumActiveRXChannels ();
VB Prototype:
Declare Function fnGetNumActiveRXChannels Lib "PSKCore.dll" () As Long

Delphi Pascal Prototype:
function fnGetNumActiveRXChannels; integer; stdcall; external 'pskcore.dll';

Parameters: None

Return Value:
channels = Number of currently active Receive channels.

Comments:
Called to see how many receive channels are currently active.

2.2.4 fnSetRXFrequency

VC++ Prototype:
void __stdcall fnSetRXFrequency (long freq, long range, long channel);

VB Prototype:
Declare Sub fnSetRXFrequency Lib "PSKCore.dll" (ByVal freq As Long, ByVal range As Long, ByVal channel As Long)

Delphi Pascal Prototype:
procedure fnSetRXFrequency(freq, range, channel: integer); stdcall; external 'pskcore.dll';

Parameters:
 freq = PSK31 Receive audio center frequency. (100 to 3500 Hz.) (default=1500)

 range = Search range in Hz. (0 to 50 Hz)

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Called to set a new receive audio center frequency. The search range parameter is used to set limits on how far

to search the fft data for a peak. When fnSetRXFrequency(..) is called, a frequency peak is searched for between (freq-
range) and (freq+range). This peak frequency estimate is then used as the new center frequency for the receiver. The
PSK31 receiver then begins fine tuning it's frequency within the AFC Limits which are set using the fnSetAFCLimit()
function. A range of 0 disables the search mode.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 11

2.2.5 fnSetRXPSKMode

VC++ Prototype:
void __stdcall fnSetRXPSKMode(long mode, long chan);

VB Prototype:
Declare Sub fnSetRXPSKModeLib "PSKCore.dll" (ByVal mode As Long, ByVal chan As Long)

Delphi Pascal Prototype:
procedure fnSetRXPSKMode(mode, chan: integer); stdcall; external 'pskcore.dll';

Parameters:
 mode = PSK31/63 Mode.

0 = BPSK (default mode)
1 = QPSK usb
2 = QPSK lsb
8 = BPSK 62.5 bps double speed mode
9 = QPSK usb 62.5 bps double speed mode
10 = QPSK lsb 62.5 bps double speed mode
16 = BPSK 125 bps quad speed mode
17 = QPSK usb 125 bps quad speed mode
18 = QPSK lsb 125 bps quad speed mode

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Called to set the PSK31/63 demodulation mode for RX channels.

2.2.6 fnGetRXFrequency

VC++ Prototype:
long __stdcall fnGetRXFrequency (long channel);

VB Prototype:
Declare Function fnGetRXFrequency Lib "PSKCore.dll" (ByVal channel As Long) As Long

Delphi Pascal Prototype:
function fnGetRXFrequency(channel: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 channel = Receive channel(0 to 49)

Return Value:
The current Receive frequency.(100 to 3500)Hz.

Comments:
Call this to obtain the current receive center frequency. This is useful to keep up with the receive frequency as

the AFC moves it around. The RX frequency for channel 0 is also sent back as a parameter with the MSG_DATARDY
windows message.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 12

2.2.7 fnSetFFTMode

VC++ Prototype:
void __stdcall fnSetFFTMode (long ave, long maxscale, long mode);

VB Prototype:
Declare Sub fnSetFFTMode Lib "PSKCore.dll" (ByVal ave As Long, ByVal maxscale As Long, ByVal mode As Long)

Delphi Pascal Prototype:
procedure fnSetFFTMode(ave, maxscale, mode: integer); stdcall; external 'pskcore.dll';

Parameters:
 ave = FFT "smoothing" value. (1 to 10) 1 = no smoothing, 10 = Max smoothing(default=1)

 maxscale = FFT amplitude scaling value. This is the maximum value the FFT will return if the input is a
fullscale sinewave. (default = 100)

If maxscale is 100 and mode is log, then the the fft range is 0 to 100dB.
If maxscale is 2500, then the the fft range is 0 to 2500.

 mode = data output type.
0 = Root mode. Data is the 4th root of the linear FFT output power
1 = log mode. Data is 10log() of the FFT power. (default mode)
10 to 90 = log mode with (10% to 90%) baseline clipping applied to the data.

Return Value:
None.

Comments:
Called to set FFT data mode, averaging mode, baseline clipping and amplitude scaling value. If the mode value is
between 10 and 90, then the data is baseline clipped by that percentage. For example if the mode is 20 and maxscale is
100, then all data from 20 to 100 is shifted and scaled to range from 0 to 100. This can be used to shift the fft data so that
the baseline noise is at the bottom of the viewing screen, giving a larger viewing dynamic range.

2.2.8 fnGetFFTData

VC++ Prototype:
long __stdcall fnGetFFTData (long* DataArray, long fstart, long fend);

VB Prototype:
Declare Function fnGetFFTData Lib "PSKCore.dll" (DataArray As Long, ByVal fstart As Long, ByVal fend As Long) As
Long

Delphi Pascal Prototype:
function fnGetFFTData(DataArray: PDataArray; fstart, fend: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 DataArray = Pointer to an array of 1024 longs that will be filled with FFT data by the dll.

 fstart = Starting index to the array.(0 to 1022)

 fend = Ending index to the array. (1 to 1023)

Return Value:
A boolean value. FALSE(0) = No Input Signal Overload. TRUE(not 0) = Audio input signal is overloading the

soundcard.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 13

Comments:
This routine is called after receiving the Windows User message MSG_DATARDY from the dll. This message is sent to
the application window when the next block of data is available from the sound card. The 1024 longs are the amplitudes
of 1024 frequencies. The DataArray(0) is zero frequency(not very useful). The DataArray(499) corresponds to 1949Hz.
The DataArray(1023) corresponds to 3996Hz. Each point steps by 3.90625Hz(8000/2048). Use the fstart and fend
parameters to copy partial ranges into your array. This is useful for zooming where you don't need all the data points. If
the routine returns TRUE, the input level to the soundcard is too high and must be reduced.

2.2.9 fnGetClosestPeak

VC++ Prototype:
long __stdcall fnGetClosestPeak (long fstart, long fend);

VB Prototype:
Declare Function fnGetClosestPeak Lib "PSKCore.dll" (ByVal fstart As Long, ByVal fend As Long) As Long

Delphi Pascal Prototype:
function fnGetClosestPeak (fstart, fend: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 fstart = Starting frequency to search from(100 to 3500)

 fend = Ending frequency limit to search to(100 to 3500)

Return Value:
Frequency peak if found otherwise it just returns the start frequency if no peak is found.

Comments:
This function can be called to find the nearest spectral peak frequency from the 'fstart' frequency to 'fend' frequency. It
makes no distinction of signal type, just looks for a peak.

2.2.10 fnGetSyncData

VC++ Prototype:
void __stdcall fnGetSyncData (long* SyncArray, long channel);

VB Prototype:
Declare Sub fnGetSyncData Lib "PSKCore.dll" (SyncArray As Long, ByVal channel As Long)

Delphi Pascal Prototype:
procedure fnGetSyncData (SyncArray: PSyncArray; channel: integer); stdcall; external 'pskcore.dll';

Parameters:
 SyncArray = Pointer to an array of 16 longs that will be filled with signal sync data by the dll. Needs to be able

to hold at least 16 longs.

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Call this function to obtain a set of sync signals. Each value indicates the energy at each of the 16 sample points

within a bit time(range 0 to 1000). The maximum energy bit time is used to determine the center of the bit and that is
where the data is sampled. The usefulness of this is to be able to watch the bit center drift rate which indicates an off
frequency soundcard either on the sending or receiving side.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 14

2.2.11 fnGetVectorData

VC++ Prototype:
void __stdcall fnGetVectorData (long* VectorArray, long channel);

VB Prototype:
Declare Sub fnGetVectorData Lib "PSKCore.dll" (VectorArray As Long, ByVal channel As Long)

Delphi Pascal Prototype:
procedure fnGetVectorData(VectorArray: PVectorArray; channel: integer); stdcall; external 'pskcore.dll';

Parameters:
 VectorArray = Pointer to an array of 16 longs that will be filled with signal vector data by the dll. Needs to be

able to hold at least 16 longs.

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Call this function to obtain a set of signal vectors. Each 2 elements of the VectorArray[i] represent the x,y

coordinates of a vector whose magnitude is 1000.
For example:
 VectorArray[0] = 0, VectorArray[1] = 1000 is a vector pointing up(steady carrier 0 deg.)
 VectorArray[2] = 1000, VectorArray[3] = 0 is a vector pointing right(+90deg.)
 VectorArray[4] = 0, VectorArray[5] = -1000 is a vector pointing down(idle 180deg)
 VectorArray[6] = -1000, VectorArray[7] = 0 is a vector pointing left(-90 deg.)
 VectorArray[6] = -867, VectorArray[7] = 500 is a -60 deg. vector

pseudo code example:
// xc,yc is the pixel coordinates of the center of the display circle.(y increases down the screeen)
// r is the radius in pixels of the display circle.

for(x=0; x<16; x+=2)
{
 MemDC.MoveTo(xc, yc);
 MemDC.LineTo(xc + (r * VectorArray[x]/1000), yc - (r * VectorArray[x+1]/1000));
}

2.2.12 fnGetRawData

VC++ Prototype:
long __stdcall fnGetRawData (long* DataArray, long dstart, long dend);

VB Prototype:
Declare Function fnGetRawData Lib "PSKCore.dll" (DataArray As Long, ByVal dstart As Long, ByVal dend As Long) As
Long

Delphi Pascal Prototype:
function fnGetRawData(DataArray: PDataArray; dstart, dend: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 DataArray = Pointer to an array of 2048 longs that will be filled with raw input samples from the soundcard.

 dstart = Starting index to the array.(0 to 2046)

 dend = Ending index to the array. (1 to 2047)

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 15

Return Value:
A boolean value. FALSE(0) = No Input Signal Overload. TRUE(not 0) = Audio input signal is overloading the

soundcard.

Comments:
This routine can be called in place of or in addition to fnGetFFTData after receiving the Windows User message

MSG_DATARDY from the dll. This message is sent to the application window when the next block of data is available
from the sound card.
The 2048 longs contain the raw signal amplitudes(-32768 to 32767) sampled at 8000Hz from the soundcard.

2.2.13 fnSetAFCLimit

VC++ Prototype:
void __stdcall fnSetAFCLimit (long limit, long channel);

VB Prototype:
Declare Sub fnSetAFCLimit Lib "PSKCore.dll" (ByVal limit As Long, ByVal channel As Long)

Delphi Pascal Prototype:
procedure fnSetAFCLimit (limit, channel: integer); stdcall; external 'pskcore.dll';

Parameters:
 limit = AFC limit in Hz. (0 to 1000, or 3000 Hz) PSK center frequency will be bounded +/-limit Hz(default=50). If

set to 3000Hz, then a special fast AFC is used for tracking doppler shifting signals.

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Called to set the AFC frequency limit of operation. A limit of = 0 turns off any AFC action.

2.2.14 fnSetSquelchThreshold

VC++ Prototype:
void __stdcall fnSetSquelchThreshold (long thresh, long mode, long channel);

VB Prototype:
Declare Sub fnSetSquelchThreshold Lib "PSKCore.dll" (ByVal thresh As Long, ByVal mode As Long, ByVal channel As
Long)

Delphi Pascal Prototype:
procedure fnSetSquelchThreshold(thresh, mode, channel: integer); stdcall; external 'pskcore.dll';

Parameters:
 thresh = A value between 0 and 99 to set the squelch threshold. (defualt=50)
 mode = Squelch response speed

0 = Fast(uses fixed value for fast filtering)
1 = Slow(uses fixed value for slow filtering) (default speed)
10-200 = User selectable response speed.(10 is fastest, 200 is slowest response)

 channel = Receive channel(0 to 49)

Return Value:
None.

Comments:
Called to set the squelch threshold. If a signal value exceeds this threshold, PSK31 characters will be decoded

and made available to the application. A value of zero will decode characters regardless of the signal strength (Open

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 16

Squelch). The mode parameter can be used to select a fast response useful under good signal conditions or slow which
operates better under noisy conditions or any custom user selectable speed.

2.2.15 fnGetSignalLevel

VC++ Prototype:
long __stdcall fnGetSignalLevel (long channel);

VB Prototype:
Declare Function fnGetSignalLevel Lib "PSKCore.dll" (ByVal channel As Long) As Long

Delphi Pascal Prototype:
function fnGetSignalLevel(channel: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 channel = Receive channel(0 to 49)

Return Value:
A value from 0 to 99 that is an indicator of signal quality.

Comments:
Called to get the signal quality. This value is compared with the squelch threshold to determine whether to decode

characters or not. Useful for providing a signal strength/quality indicator. The signal strength for receive channel 0 is also
sent back as a parameter with the MSG_DATARDY windows message. This value is not the amplitude of the signal but a
measure of how much phase noise is on the incoming signal.

2.2.16 fnRewindInput

VC++ Prototype:
void __stdcall fnRewindInput (long blocks);

VB Prototype:
Declare Sub fnRewindInput Lib "PSKCore.dll" (ByVal blocks As Long) As Long

Delphi Pascal Prototype:
procedure fnRewindInput (channel: blocks); stdcall; external 'pskcore.dll';

Parameters:
 blocks = Number of data blocks to back up.(1 to 99) Each block is 2048 samples or .256 Seconds.

Return Value:
None

Comments:
Called to rewind the dll's input audio data. This can be used to back up in time and re-decode signals that have

already been received. The dll keeps 99 blocks of past data that can be replayed. Each block is equivalent to one FFT
buffers worth and is .256 Seconds per block giving a maximum rewind time of 25.344 Seconds. When this function is
called, the replay occurs about 50 times as fast(depending on CPU speed) as normal so all the data ready and decoded
characters will be sent at a much faster rate until the decoder catches up with the real time data again.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 17

2.3.Transmit Functions

2.3.1 fnStartTX

VC++ Prototype:
void __stdcall fnStartTX (long mode);

VB Prototype:
Declare Sub fnStartTX Lib "PSKCore.dll" (ByVal mode As Long)

Delphi Pascal Prototype:
procedure fnStartTX(mode: integer); stdcall; external 'pskcore.dll';

Parameters:
 mode - Type of transmission.

0 or 128 = BPSK or Duplex BPSK
1 or 129 = QPSK usb or Duplex QPSK usb
2 or 130 = QPSK lsb or Duplex QPSK lsb
3 or 131= Tune(steady carrier) or Duplex Tune(steady carrier)
4 or 132 = Tune(steady carrier) follow with CWID or Duplex Tune(steady carrier) follow with CWID

8 or 136 = BPSK or Duplex BPSK (double speed 62.5 bps PSK)
9 or 137 = QPSK usb or Duplex QPSK usb (double speed 62.5 bps PSK)
10 or 138 = QPSK lsb or Duplex QPSK lsb (double speed 62.5 bps PSK)

16 or 144 = BPSK or Duplex BPSK (quad speed 125 bps PSK)
17 or 145 = QPSK usb or Duplex QPSK usb (quad speed 125 bps PSK)
18 or 146 = QPSK lsb or Duplex QPSK lsb (quad speed 125 bps PSK)

(if parameter has bit 7 set, then the receiver is left on and full duplex operation is available.)

Return Value:
None.

Comments:
Call this function to change TX mode with the specified transmit mode. The soundcard begins outputting audio. If the
COM port PTT is enabled, The RTS and/or DTR lines will become active. If not using duplex mode, then the RX mode is
shut off during transmit.

2.3.2 fnStopTX

VC++ Prototype:
void __stdcall fnStopTX();

VB Prototype:
Declare Sub fnStopTX Lib "PSKCore.dll" ()

Delphi Pascal Prototype:
procedure fnStopTX; stdcall; external 'pskcore.dll';

Parameters:
none.

Return Value:
None.

Comments:

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 18

Call this function to change from TX mode back to RX mode. Any characters left to transmit and any CW ID is
completed before switching back to RX.

2.3.3 fnAbortTX

VC++ Prototype:
void __stdcall fnAbortTX ();

VB Prototype:
Declare Sub fnAbortTX Lib "PSKCore.dll" ()

Delphi Pascal Prototype:
procedure fnAbortTX; stdcall; external 'pskcore.dll';

Parameters:
none.

Return Value:
None.

Comments:
Call this function to change from TX mode back to RX mode. Any pending characters or CW ID is aborted and

the dll goes back to RX mode. Calling this function when in receive mode will clear all transmit characters from the TX
buffer.

2.3.4 fnSetTXFrequency

VC++ Prototype:
void __stdcall fnSetTXFrequency (long freq);

VB Prototype:
Declare Sub fnSetTXFrequency Lib "PSKCore.dll" (ByVal freq As Long)

Delphi Pascal Prototype:
procedure fnSetTXFrequency(freq: integer); stdcall; external 'pskcore.dll';

Parameters:
 freq = PSK31 Transmit audio center frequency. (100 to 3500 Hz.) (default=1500)

Return Value:
None.

Comments:
Called to set a new Transmit audio center frequency.

2.3.5 fnSetCWIDString

VC++ Prototype:
void __stdcall fnSetCWIDString (char* IDStrg);

VB Prototype:
Declare Sub fnSetCWIDString Lib "PSKCore.dll" (ByVal IDStrg As String)

Delphi Pascal Prototype:
procedure fnSetCWIDString(IDStrg: PChar); stdcall; external 'pskcore.dll';

Parameters:
 IDStrg = Null terminated string containing the string to send as a CW ID at the end of a PSK31 transmission.

For prosign characters, '*' is SK, '+' is AR, and '=' is BT. (default="Call Not Set")

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 19

Return Value:
None.

Comments:
Called to specify a character string to send as a CW ID at the end of a transmission.

2.3.6 fnSendTXCharacter

VC++ Prototype:
long __stdcall fnSendTXCharacter (long txchar, long cntrl);

VB Prototype:
Declare Function fnSendTXCharacter Lib "PSKCore.dll" (ByVal txchar As Long, ByVal cntrl As Long) As Long

Delphi Pascal Prototype:
function fnSendTXCharacter(txchar, control: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 txchar = ASCII Character to be Transmitted(0 to 255) or control codes.

Transmitter control codes:
1 = AutoStopTX control code.
2 = Add CWID at end of TX control code.

 cntrl = Control Code flag
FALSE = 0 = txchar is ASCII character to send.
TRUE = Not 0 = txchar is a transmitter control code.

Return Value:
The number of ASCII characters left in the TX buffer that have not yet been sent.

Comments:
Called to send an ASCII character. The characters are buffered up so this routine can be called without waiting

for the character to be sent. It can be called prior to beginning transmission for type ahead buffering. If the cntrl
parameter is TRUE(not zero), then the txchar parameter is interpreted as a control code for adding a CWID, invoking the
TX autostop feature when the tx buffer goes empty, etc. If txchar is a 'Backspace(8)' character and there is at least one
other character in the Transmit buffer that has not yet been transmitted, then the last character in the buffer will be
removed and not sent. If there is no other characters in the buffer, then the Backspace(8) code will be transmitted so the
receiving side can handle it.

2.3.7 fnSendTXString

VC++ Prototype:
long __stdcall fnSendTXString(char* lpszTXStrg);

VB Prototype:
Declare Function fnSendTXStringLib "PSKCore.dll" (ByVal TXStrg As String) As Long

Delphi Pascal Prototype:
function fnSendTXString(lpszTXStrg: PChar): integer; stdcall; external 'pskcore.dll';

Parameters:
 TXStrg = Null terminated ASCII string to send to the Transmitter.

Return Value:
The number of ASCII characters left in the TX buffer that have not yet been sent.

Comments:
Called to send a character string.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 20

2.3.8 fnGetTXCharsRemaining

VC++ Prototype:
long __stdcall fnGetTXCharsRemaining ();

VB Prototype:
Declare Function fnGetTXCharsRemaining Lib "PSKCore.dll" () As Long

Delphi Pascal Prototype:
function fnGetTXCharsRemaining: integer; stdcall; external 'pskcore.dll';

Parameters:
None.

Return Value:
The number of ASCII characters left in the TX buffer that have not yet been sent.

Comments:
Call this to obtain the number of TX characters not yet sent that are still remaining in the TX buffer.

2.3.9 fnClearTXBuffer

VC++ Prototype:
void __stdcall fnClearTXBuffer();

VB Prototype:
Declare Sub fnClearTXBuffer Lib "PSKCore.dll" ()

Delphi Pascal Prototype:
procedure fnClearTXBuffer; stdcall; external 'pskcore.dll';

Parameters:
None.

Return Value:
None.

Comments:
Called to clear the TX character buffer.

2.3.10 fnSetCWIDSpeed

VC++ Prototype:
void __stdcall fnSetCWIDSpeed (long speed);

VB Prototype:
Declare Sub fnSetCWIDSpeed Lib "PSKCore.dll" (ByVal speed As Long)

Delphi Pascal Prototype:
procedure fnSetCWIDSpeed(speed: integer); stdcall; external 'pskcore.dll';

Parameters:
 speed = CW ID Speed selector code:

1 = 37.5 wpm.
2 = 18.75 wpm.
3 = 12.5 wpm.
4 = 9.375 wpm.

Return Value:
None.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 21

Comments:
Called to select a CWID speed. (wpm = 37.5/speed) for speed > 0

2.3.11 fnSetComPort

VC++ Prototype:
long __stdcall fnSetComPort (long portnum, long mode);

VB Prototype:
Declare Function fnSetComPort Lib "PSKCore.dll" (ByVal portnum As Long, ByVal mode as Long) As Long

Delphi Pascal Prototype:
function fnSetComPort(portnum, mode: integer): integer; stdcall; external 'pskcore.dll';

Parameters:
 portnum = Serial Com port number(1 to 8).

 mode = PTT mode:
0 = No serial port PTT. (default mode)
1 = Use RTS only.
2 = Use DTR only.
3 = Use RTS and DTR.

Return Value:
A boolean value. FALSE(0) = Specified Com port not available. TRUE(not 0) = Com port opened Okay.

Comments:
Called to open a serial Com port for use as PTT control. Can be called just to check to see which ports are

available by looking at the return value. Also calling with any port number with a mode of '0' will deactivate the serial port
PTT function.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 22

2.4.Miscellaneous Functions

2.4.1 fnSetClockErrorAdjustment

VC++ Prototype:
void __stdcall fnSetClockErrorAdjustment (long ppm);

VB Prototype:
Declare Sub fnSetClockErrorAdjustment Lib "PSKCore.dll" (ByVal ppm As Long)

Delphi Pascal Prototype:
procedure fnSetClockErrorAdjustment(ppm: integer); stdcall; external 'pskcore.dll';

Parameters:
 ppm = Soundcard clock error adjustment value in parts per million. Range is +/- 20000 .(default=0)

+ ppm makes soundcard clock faster.
- ppm makes soundcard clock slower.

Return Value:
None.

Comments:
Called to compensate for soundcards that are off frequency.

2.4.2 fnGetDLLVersion

VC++ Prototype:
long __stdcall fnGetDLLVersion ();

VB Prototype:
Declare Function fnGetDLLVersion Lib "PSKCore.dll" () As Long

Delphi Pascal Prototype:
function fnGetDLLVersion: integer; stdcall; external 'pskcore.dll';

Parameters:
None.
Return Value:

A long containing the DLL software revision number.(100 = 1.00, 123 = 1.23, etc)
Comments:

Called to get the DLL's software revision number.

2.4.3 fnGetErrorString

VC++ Prototype:
void __stdcall fnGetErrorString(char* ErrorStr);

VB Prototype:
Declare Sub fnGetErrorString Lib "PSKCore.dll" (ByVal ErrorStr As String)

Delphi Pascal Prototype:
procedure fnGetErrorString(ErrorStr: PChar); stdcall; external 'pskcore.dll';

Parameters:
 ErrorStr = Pointer to Null terminated ASCII string. The DLL will fill in this string with the latest error message.

(ErrorString needs to point to at least 50 characters worth of buffer to hold the message string.)
Return Value:

None
Comments:

Called to retrieve any text details about the last error.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 23

2.4.4 fnSetInputWavePath

VC++ Prototype:
long __stdcall fnSetInputWavePath(char* Path, long* pLengthTime, long Offset);

VB Prototype:
Declare Function fnSetInputWavePath Lib "PSKCore.dll" (ByVal Path As String, pLengthTime As Long, ByVal Offset As
Long) As Long

Delphi Pascal Prototype:
function fnSetInputWavePath (Path: Pchar; pLengthTime:PpLengthTime; Offset):integer; stdcall; external 'pskcore.dll';

Parameters:
 Path = Pointer to Null terminated ASCII string containing the full path to the desired wave file to be read by

the DLL as audio input to the decoder.
 pLengthTime = Pointer to a long variable that the DLL will fill in with the length of the specified wave file in

seconds.
 Offset = Starting offset into the specified input file in seconds.(0 = Start of file)

Return Value:
A long value indicating the Error status of the specified Input wave file.
0 = File is Okay
34= can't open wave file for input
35= file is not a RIFF wave type
36= Invalid wave file
37= no data in file
38= not a supported data type

Comments:
Called to Set up the Input wave file name and path as well as any starting offset into the file. The routine writes

the length of the file(in seconds) into the user supplied variable pLengthTime. Returns any errors in finding or opening the
file.

2.4.5 fnSetOutputWavePath

VC++ Prototype:
long __stdcall fnSetOutputWavePath(char* Path, long TimeLimit, long Append);

VB Prototype:
Declare Function fnSetOutputWavePath Lib "PSKCore.dll" (ByVal Path As String, ByVal TimeLimit As Long, ByVal
Append As Long) As Long

Delphi Pascal Prototype:
function fnSetOutputWavePath (Path: Pchar; TimeLimit, Append):integer; stdcall; external 'pskcore.dll';

Parameters:
 Path = Pointer to Null terminated ASCII string containing the full path to the desired wave file to be written to

the DLL as audio output.
 TimeLimit = Time Limit in Seconds that the file will be written.(-1==No limit)
 Append = Boolean value if TRUE then the data is appended to the end of an existing file. If FALSE then the

file is overwritten.

Return Value:
A long value indicating the Error status of the specified Input wave file.
0 = Path is Okay
41= can't open wave file for output

Comments:
Called to Set up the Output wave file name and path as well as whether to append or overwrite the file. Also

specifies any time limit imposed on the output file which can be used to keep from filling up a disk. Returns an error code
if it can’t find the path.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 24

2.5.USER WINDOW'S MESSAGE DEFINITIONS

2.5.1 MSG_DATARDY

Numeric Value is WM_USER+1000 or 0x400+0x3E8 or 0x7E8 or 2024.

This message is sent from the DLL to the Window whose handle is passed when the fnStartSoundCard is called. It is
sent whenever there is new data available from the FFT or Raw data from the soundcard. The message is sent every
0.256 Seconds while receiving and transmitting. It can also be used for general timing by the application for display
updates, etc.

The following parameters are sent along with this message:
 wParam = current RX center frequency in Hz for RX channel 0.

 lParam = current signal strength(0 to 99)for RX channel 0.

Call fnGetFFTData and/or fnGetRawData in response to this message to obtain the data.

2.5.2 MSG_PSKCHARRDY

Numeric Value is WM_USER+1001 or 0x400+0x3E9 or 0x7E9 or 2025.

This message is sent from the DLL to the Window whose handle is passed when the fnStartSoundCard is called. It is
sent whenever there is an ASCII character available from the receiver or if in the Transmit mode, when a character has
been sent out the soundcard.

The following parameters are sent along with this message:
 wParam = The ASCII character(0 to 255)

 lParam = -1 if is a transmitted character, or the Receive channel number(0-49) that is sending the message.

2.5.3 MSG_STATUSCHANGE

Numeric Value is WM_USER+1002 or 0x400+0x3EA or 0x7EA or 2026.

This message is sent from the DLL to the Window whose handle is passed when the fnStartSoundCard is called. It is
sent whenever a status change occurs in the dll. The current status is available in the message parameters.

The following parameters are sent along with this message:
 wParam = status code.

Status Codes:
0 = In RX mode
1 = In TX mode
2 = CPU too slow or busy(soundcard was reset because CPU couldn't keep up)
3 = Is finishing transmitting remaining characters in buffer and any CW ID.
4 = Input Wave File Finished Reading
5 = Output Wave File Reached Time Limit
6 = Input File Complete Status(value is in lParam in percentage 0% to 100%)
7 = Output File Complete Status(value is in lParam in percentage 0% to 100%)
10 = Memory Allocation error
11 = Tried to read and soundcard is not open
12 = Input buffers over-flowed
13 = Timed out waiting for input buffers
14 = Tried to write and soundcard is not open
15 = Output buffers under-flowed

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 25

16 = Timed out waiting for output buffers
17 = Card doesn't support 16bit, 8000Hz, Mono format
18 = Still something playing on soundcard
19 = Header not prepared
20 = Device is synchronous
21 = Bad Device ID, Soundcard Not Present
22 = Driver failed to enable
23 = Device already allocated
24 = Device handle is invalid
25 = No device driver present
26 = Function isn't supported
27 = Error value out of range
28 = Invalid flag passed
29 = Invalid parameter passed
30 = Handle being used
31 = Driver does not call DriverCallback
32 = Registry error
33 = Unknown Error
34= can't open wave file for input
35= file is not a RIFF wave type
36= Invalid wave file
37= no data in file
38= not a supported data type
39= Error reading data from file
40= tried to read and file is not open
41= can't open wave file for output
42= error writing to wave file
43= tried to write and file is not open

 lParam = Percentage(0 to 100%) complete if using wave files.

2.5.4 MSG_IMDRDY

Numeric Value is WM_USER+1003 or 0x400+0x3EB or 0x7EB or 2027.

The following parameters are sent along with this message:

 wParam = The last calculated Received IMD.(0 to -100)dB.

 lParam = channel number ORed with 0x80 if the noise floor is higher than the IMD.
channel = Receive channel(0 to 49) if the IMD is a valid reading.
channel = Receive channel(128 to 177) if the IMD is the noise floor reading.(bit 7 set)

Comments:
This message is sent from the DLL to the Window whose handle is passed when the fnStartSoundCard is called.

IMD is only calculated during periods of "idle" signals. If the channel number has bit 7 set, then the IMD reading is
actually the noise floor. One can either choose to not display an IMD reading if this bit is set, or display a message that
the actual IMD is less than this IMD reading. An example would be that the actual signal has a good -40dB IMD.
Because the noise level is -20dB the IMD reading will be -20dB giving an incorrect reading. See the technical description
about IMD for further explaination.

2.5.5 MSG_CLKERROR

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 26

Numeric Value is WM_USER+1004 or 0x400+0x3EC or 0x7EC or 2028.

The following parameters are sent along with this message:
wParam = Clock error in ppm.

+ error if soundcard clock is faster than the incoming signal clock.
- error if soundcard clock is slower than the incoming signal clock.

 lParam = RX channel number(0 to 49).

Comments:
This message is sent from the DLL to the Window whose handle is passed when the fnStartSoundCard is called. This
message is only sent after 10 seconds of continuous open squelch reception. If there is no valid signal and the squelch is
forced open, then the error value will not be meaningful. (Error can be due to the transmitted signal or one’s own
soundcard)

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 27

3. Technical Operation Description

3.1.PSK31 Signal Generation
Creating a PSK31 signal is done in stages starting with character input to final waveform output to the soundcard.

Overall Block Diagram of the PSK31 Transmit Section.

8
bits

3 to 15
bits

Character
Input

FIFO

Varicode
Table

PSK31 Mode
Wave
ShaperDifferential

Phase
State
Machine

BPSK or
QPSK
Serializer

I

TX Frequency

Sin/Cos
Generator

Wave
ShaperQ 2 bit symbol

00= NO CHANGE
10= 180 CHANGE
01= +90 CHANGE
11= -90 CHANGE

Soundcard
DAC

Audio Out
To
Transmitter

3.1.1 Input Characters

PSK31 sends and receives 8 bit characters. 0 through 127 are the standard ASCII characters and 128 to 255 are
extended characters. The PSKCore dll has provisions for outputting a steady carrier tone for tuning as well as a CW ID
mode that appends a Morse code string to the end of a transmission.

3.1.2 Varicode Encoding

The first step in PSK31 encoding is to map the 8 bit fixed length input characters into variable length characters. By
mapping most used characters into shorter codes and least used characters into longer codes, the overall data transfer
speed can be increased. This is similar to Morse code where common letters are shorter sequences. The letter 'e' occurs
more often in text than a 'z' so it has a varicode of '11' while a 'z' has a code of '111010101'. Notice that lowercase letters
have shorter codes than upper case letters. This is why one should not use all uppercase when using PSK31 since the
varicode was optimized for lowercase letters.

Since the character data is sent serially, some means of separating characters is also needed. This is accomplished in
PSK31 by specifying that two or more consecutive zero bits separate each character. This also places the requirement
that each character code cannot contain more than one consecutive zero. It also means each code must start and end
with a one. With these requirements the Varicode code table was specified. The varicode words from the table are sent
msb first. If a new character is not ready in time to be sent, Zeros are padded into the data stream.

Example bit stream of varicoded character sequence "abc":

…0010110010111110010111100…..
 a b c

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 28

Input
Code

Varicode
Output

Input
Code

Varicode
Output

Input
Code

Varicode
Output

Input
Code

Varicode
Output

NULL 1010101011 '@' 1010111101 128 1110111101 192 11011101111
SOH 1011011011 'A' 1111101 129 1110111111 193 11011110101
STX 1011101101 'B' 11101011 130 1111010101 194 11011110111
ETX 1101110111 'C' 10101101 131 1111010111 195 11011111011
EOT 1011101011 'D' 10110101 132 1111011011 196 11011111101
ENQ 1101011111 'E' 1110111 133 1111011101 197 11011111111
ACK 1011101111 'F' 11011011 134 1111011111 198 11101010101
BEL 1011111101 'G' 11111101 135 1111101011 199 11101010111
BS 1011111111 'H' 101010101 136 1111101101 200 11101011011
HT 11101111 'I' 1111111 137 1111101111 201 11101011101
LF 11101 'J' 111111101 138 1111110101 202 11101011111
VT 1101101111 'K' 101111101 139 1111110111 203 11101101011
FF 1011011101 'L' 11010111 140 1111111011 204 11101101101
CR 11111 'M' 10111011 141 1111111101 205 11101101111
SO 1101110101 'N' 11011101 142 1111111111 206 11101110101
SI 1110101011 'O' 10101011 143 10101010101 207 11101110111
DLE 1011110111 'P' 11010101 144 10101010111 208 11101111011
DC1 1011110101 'Q' 111011101 145 10101011011 209 11101111101
DC2 1110101101 'R' 10101111 146 10101011101 210 11101111111
DC3 1110101111 'S' 1101111 147 10101011111 211 11110101011
DC4 1101011011 'T' 1101101 148 10101101011 212 11110101101
NAK 1101101011 'U' 101010111 149 10101101101 213 11110101111
SYN 1101101101 'V' 110110101 150 10101101111 214 11110110101
ETB 1101010111 'W' 101011101 151 10101110101 215 11110110111
CAN 1101111011 'X' 101110101 152 10101110111 216 11110111011
EM 1101111101 'Y' 101111011 153 10101111011 217 11110111101
SUB 1110110111 'Z' 1010101101 154 10101111101 218 11110111111
ESC 1101010101 '[' 111110111 155 10101111111 219 11111010101
FS 1101011101 '\' 111101111 156 10110101011 220 11111010111
GS 1110111011 ']' 111111011 157 10110101101 221 11111011011
RS 1011111011 '^' 1010111111 158 10110101111 222 11111011101
US 1101111111 '_' 101101101 159 10110110101 223 11111011111
SPACE 1 '`' 1011011111 160 10110110111 224 11111101011
'!' 111111111 'a' 1011 161 10110111011 225 11111101101
' " ' 101011111 'b' 1011111 162 10110111101 226 11111101111
'#' 111110101 'c' 101111 163 10110111111 227 11111110101
'$' 111011011 'd' 101101 164 10111010101 228 11111110111
'%' 1011010101 'e' 11 165 10111010111 229 11111111011
'&' 1010111011 'f' 111101 166 10111011011 230 11111111101
''' 101111111 'g' 1011011 167 10111011101 231 11111111111
'(' 11111011 'h' 101011 168 10111011111 232 101010101011
')' 11110111 'i' 1101 169 10111101011 233 101010101101
'*' 101101111 'j' 111101011 170 10111101101 234 101010101111
'+' 111011111 'k' 10111111 171 10111101111 235 101010110101
',' 1110101 'l' 11011 172 10111110101 236 101010110111
'-' 110101 'm' 111011 173 10111110111 237 101010111011
'.' 1010111 'n' 1111 174 10111111011 238 101010111101
'/' 110101111 'o' 111 175 10111111101 239 101010111111
'0' 10110111 'p' 111111 176 10111111111 240 101011010101
'1' 10111101 'q' 110111111 177 11010101011 241 101011010111
'2' 11101101 'r' 10101 178 11010101101 242 101011011011
'3' 11111111 's' 10111 179 11010101111 243 101011011101
'4' 101110111 't' 101 180 11010110101 244 101011011111
'5' 101011011 'u' 110111 181 11010110111 245 101011101011
'6' 101101011 'v' 1111011 182 11010111011 246 101011101101
'7' 110101101 'w' 1101011 183 11010111101 247 101011101111
'8' 110101011 'x' 11011111 184 11010111111 248 101011110101
'9' 110110111 'y' 1011101 185 11011010101 249 101011110111
':' 11110101 'z' 111010101 186 11011010111 250 101011111011
';' 110111101 '{' 1010110111 187 11011011011 251 101011111101
'<' 111101101 '|' 110111011 188 11011011101 252 101011111111
'=' 1010101 '}' 1010110101 189 11011011111 253 101101010101
'>' 111010111 '~' 1011010111 190 11011101011 254 101101010111
'?' 1010101111 DEL 1110110101 191 11011101101 255 101101011011

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 29

3.1.3 BPSK Serialization

PSK31 is actually Differential Phase Shift Keying because the information is sent as changes in signal phase rather than
an absolute phase state. This makes signal reception much easier since the initial signal phase does not have to be
known. For the Binary Phase Shift Keying mode, the signal either changes phase by 180 degrees for each ZERO bit or
remains the same to represent a ONE bit. The symbol rate for PSK31 is 31.25 symbols per second or a period of .032
Seconds. The Varicode word is serialized and converted into a 2 bit symbol before being sent to the differential phase
state machine which will determine the next signal phase based on the present phase and the new symbol.

180 Deg. Change No Change

BPSK "One" Data Bit
(symbol='00')

BPSK "Zero" Data Bit
(symbol='10')

Shift Register

Varicode Word

Symbol Bit
 '00' 1 No Change
 '10' 0 180 deg. Change

3.1.4 QPSK Serialization

Quad Phase Shift Keying allows 4 unique phase states for each symbol effectively doubling the amount of information that
can be sent over BPSK. Rather than send data twice as fast, PSK31 uses the extra information to allow for error
correction.

180 deg. change

QPSK '10' symbol QPSK '01' symbol QPSK '11' symbolQPSK '00' symbol

+90 deg. shift -90 deg. shiftno change

3.1.4.1 ECC Encoding Method

The error correcting coding method used in PSK31 uses convolution codes to essentially "spread out" the redundant
information over time. If one were to simply send each bit twice it is easily seen that if an error occurs in one of the bits,
there is no way to tell which bit is the correct one so the redundancy is useless. If however the redundancy is spread out
over several bits, there are some powerful mathematical methods to determine where the error occurred and correct it.
Many books have been written to describe these methods so they will not be dealt with in any depth here.
PSK31 spreads the data over 5 bits using rate ½ , constraint length 5, convolutional coding. The rate ½ refers to the fact
that half of the data is being used for redundancy. The constraint length specifies the number of bits used to spread the
redundancy.
Logically, a shift register is used to shift in each data bit. By exclusive OR'ing certain bits together, the desired symbol
encoding is performed. The bit patterns(polynomials) which are used for exclusive OR'ing determines how well the
system will be able to correct errors. The two polynomials used in PSK31 are:

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 30

034)(1 xxxxG
0124)(0 xxxxxG

The following diagram shows how the polynomials are used to generate a two bit symbol for every input bit.

s0

s12 bit
Symbol x3 x2x4 x1 Data bit IN

Note that the data bits from the varicode word are inverted before entering the shift register. This is so that the idle
stream of all zeros will produce symbols of '10' which are 180 degree phase shifts. This is useful for maintaining symbol
sync on the receiver side and being compatible with BPSK.

Varicode Word

shift register

...

Convolution
Code Look-up
table

31.25 Hz
symbol
clock

 Symbol
00 = NO CHANGE
10 = 180 CHANGE
01 = +90 CHANGE
11 = -90 CHANGE

The QPSK encoder is actually implemented using a look-up table rather than using exclusive OR gates.

3.1.5 Differential Phase Shift encoding

The next step is to take the two bit symbol and convert it into the actual signal phase state. Depending on the previous
signal phase, there are 4 signal phase possibilities for each new symbol. A simple state machine takes the present phase
state information and the new symbol to come up with the next signal phase state. In PSKCore this is done using state
tables.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 31

3.1.6 Wave Shaping and Carrier Generation

The common way to create angle modulated signals is to combine two sinusoidal waveforms whose frequency is the
desired carrier frequency and that are 90 degrees out of phase from each other. By adding these two signals in different
proportions, a signal of any desired phase can be created. The two signals are referred to as I(in phase) and
Q(quadrature phase).

cos(wct)

Q

sin(wct)

I

a

Q

I

The following MathCad simulation shows how a BPSK signal could be created using the I/Q method.

carrier amplitude A
1

2
Symbol frequency Fs 31.25
carrier frequency Fc 150

Carrier equations
Ic()t .A sin()...2 t Fc Qc()t .A cos()...2 t Fc

Modulation equations
I()t if(),,()<t .032 1 1 Q()t if(),,()<t .032 1 1

0 0.05 0.1

1

1

I()t

t

0 0.05 0.1

1

1

Q()t

t

This is a 180 degree phase shift followed by No phase shift.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 32

1 0 1

1

1

BPSK Vectors

bpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08

1

0.5

0

0.5

1

BPSK Signal

bpsk()t

t

Note the abrupt phase change at time t = .032 seconds. This is not desirable since it makes the PSK signal very wide.
One way to limit the bandwidth would be to filter the output signal. PSK31 uses a different method by using waveshaping
on the I and Q input signals so that instead of abruptly going from a 1 to a –1, the signal makes a cosine shaped transition
between –1 and 1.

Here is the same MathCad simulation except that the I and Q modulation signals are no longer rectangular, but are cosine
shaped.

Fc 400 carrier frequency A
1

2

carrier amplitude

Fs 31.25 Symbol frequency t ..,0 .000032 0.099 Plot range
carrier equations

Ic()t .A sin()...2 t Fc Qc()t .A cos()...2 t Fc
modulation equations

I()t if(),,()<t .048 sin().. Fs t 1 Q()t if(),,()<t .048 sin().. Fs t 1

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 33

0 0.05 0.1

1

1

I()t

t

0 0.05 0.1

1

1

Q()t

t

This is a 180 degree phase shift followed by No phase shift.

1 0 1

1

1

BPSK Vectors

bpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08

1

0.5

0

0.5

1

BPSK Signal

bpsk()t

t

Note the gradual transition from one phase state to the next. This results in a much narrower bandwidth signal without the
need for any post filtering. Also it can be seen that the amplitude of the signal is not constant. This means that the
transmitter must not compress or limit the audio waveform otherwise the signal will again get much wider in bandwidth.
This is perhaps the biggest problem with setting up a PSK31 station. It is very easy to overdrive and distort the PSK31
signal by applying the relatively high amplitude audio signal from the PC soundcard into the low level microphone input of
a SSB transmitter. There is no easy way to monitor ones own signal for purity so one must rely on other's signal reports.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 34

Finally, here is a MathCad simulation showing a QPSK signal that changes 180 degrees then by -90 degrees.
Modulation equations

I()t if ,,<t .032 cos .
t

T
1 Q()t if ,,<t .064 cos .

t

T
1

0 0.05 0.1

1

0

1

I()t

t

0 0.05 0.1

1

0

1

Q()t

t

This is a 180 degree phase shift followed by a –90 degree phase shift.

1 0 1

1

1

QPSK Vectors

Q()t

I()t

qpsk()t .I()t Ic()t .Q()t Qc()t

0 0.02 0.04 0.06 0.08
1

0.5

0

0.5

1
QPSK Signal

qpsk()t

t

Note that during 90 degree phase changes, the amplitude does not drop all the way to zero as in the 180 degree case.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 35

3.1.7 Power Spectrum

The BPSK/QPSK signal has a power spectrum consisting of a large main lobe centered around the carrier frequency out
to a null at the carrier frequency +/- 31.25 Hz. There are multiple lobes extending out to infinity but their amplitudes
continue to drop. Here is a MathCad simulation of the PSK31 power spectrum.

Fs 31.25 T
1

Fs
f ..,140 139.2 139.2

S()f ..T
sin()...2 f T

...2 f T

2
1

1 .4 ().f T
2

2

Sdb()f .10 log()S()f 14.9

150140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150
100

90

80

70

60

50

40

30

20

10

0
Power Spectrum of PSK31

Frequency (Hz)

P
ow

er
 (

db
)

The following FFT scan of a QPSK signal compares favorably with the math model. The vertical divisions are 10 db.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 36

3.2.PSK31 Signal Detection

3.2.1 Block Diagram

The following block diagram shows the major functions implemented by the dll to receive PSK31 signals. Receiver audio
is captured by the PC soundcard and processed into final ASCII characters for display.

C
al

c
Ph

as
e

D
iff

er
en

ce
A

ng
le

Ph
as

e
D

iff
er

en
ce

 a
ng

le

I1 Q
0

Q
1

 S
ym

bo
l P

er
io

d
D

el
ay

 E
le

m
en

ts

z-
1

z-
1

31
.2

5
H

z
S

am
pl

e
R

at
eI0

A
ud

io
 In

Fr
om

R

ec
ei

ve
r

S
ou

nd
C

ar
d

A
D

C
80

00
 H

z
S

am
pl

e
R

at
e C

en
te

r
Fr

eq
ue

nc
y

S
et

po
in

t

Q

S
in

/C
os

N
C

O

D
ec

im
at

e
by

 4
 F

IR

I
34

 T
A

P

Fr
eq

 F
ilt

er
64

 ta
p

FI
R

50
0

H
z

S
am

pl
e

R
at

e

B
it

Fi
lte

r
64

 ta
p

FI
R

D
ec

im
at

e
by

 4
 F

IR

34
 T

A
P

A
FC

A
G

C

Q
PS

K
 o

ut
pu

t
bi

t

B
PS

K
 o

ut
pu

t
bi

t
B

PS
K

Q
PS

K

S
of

t-
de

ci
si

on
V

ite
rb

i
D

ec
od

er

V
ar

ic
od

e
D

ec
od

e
Lo

ok
-u

p
Ta

bl
e

S
hi

ft
 R

eg
is

te
r/

lo
gi

c

...

S
-M

et
er

/
S

qu
el

ch
C

on
tr

ol

20
48

 p
t F

FT
G

oe
rt

ze
l F

ilt
er

s,
IM

D
 c

al
cu

la
tio

n

S
ym

bo
l V

ec
to

r,
 a

nd
S

yn
c

Po
si

tio
n

da
ta

I Q

S
ym

bo
l

C
lo

ck
S

yn
c

Fr
eq

Er
ro

r

S
qu

el
ch

S
et

po
in

t

S
ig

na
l

Q
ua

lit
y

Le
ve

l

8
bi

t
R

X
 C

ha
ra

ct
er

A
ng

le
Er

ro
r

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 37

3.2.2 Soundcard Input

The receiver audio is sampled by the soundcard into 16 bit samples at a 8000 Hz rate and converted into floating point
representation for the remainder of the processing.

This real signal is fed to 2048 point FFT and realtime display section for tuning and visual signal monitoring. It is also sent
on to the next stage of the PSK decoder.

3.2.3 Complex Mixer

The next stage converts the real audio input into a complex baseband signal centered around the users center frequency
set point. An NCO(numerically controlled oscillator) is implemented as a sin(wt) and a cos(wt) frequency source where
is a control input from the users center frequency setpoint and also the AFC control signal that is derived further
downstream. These two frequencies are 90 degrees apart and are multiplied by the real input signal to create two data
streams called I and Q.

)cos()()(ttInputtI)sin()()(ttInputtQ

The following code segment performs this function:

//Generate complex sample by mixing input sample with NCO's sin/cos
Inptr1->x = pIn[i] * cos(ncophz); //generate I and Q signals
Inptr1->y = pIn[i] * sin(ncophz);
ncophz = ncophz + m_phzinc; //update NCO
if(ncophz > PI2) //handle 2 Pi wrap around

ncophz -= PI2;

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 38

3.2.4 Decimation by 16

The complex signal is then down sampled by 16 to reduce the sampling rate to 16 times the signal bandwidth. Two
stages of decimation by 4 are used rather than one. It is more processor efficient to break it up rather than have a fairly
long FIR running at the highest sample rate. Each stage is identical and has a frequency response that is the same
except that the one is scaled infrequency by 4. Since the signal is complex, the filters are run on both the I and Q signal.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
100

90

80

70

60

50

40

30

20

10

0

10
35 Tap Decimation by 4 FIR(stage 1)

Hz

dB

10

100

Ak

12000 fk

0 25 50 75 100 125 150 175 200 225 250 275 300
100

90

80

70

60

50

40

30

20

10

0

10
35 Tap Decimation by 4 FIR(stage 2)

Hz

dB

10

100

Ak

3000 fk

The final sampling frequency is now 88000/16 or 500 Hz.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 39

3.2.5 Matched Data Bit filter

The final system bandwidth is set by this FIR filter. This filter has two purposes. One is to provide a magnitude response
that provides the best signal to noise ratio in order to extract the data signal from the noise. The second thing it must do
is minimize any ISI(Inter-Symbol Interference) that is generated in the transmitter, signal path, and receiver system. With
PSK31 there is no ISI from the transmission process due to the wave shaping of the signal, so any ISI will come from the
signal path and the receiver filters. Since the HF signal path is not predictable the best one can do is minimize the ISI
generated by the receiver bit FIR filter. A compromise filter was developed that gives fairly low ISI and a reasonable
cutoff shape. Better filters are probably out there but would not provide a whole lot of noticeable performance
improvement, especially in the HF environment. The addition of interleaving or longer ECC codes would probably make a
bigger difference. Below is the frequency response of the bit filter.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
90
85

80
75

70
65

60
55

50
45

40
35
30
25
20
15
10
5
0
5

10
65 tap FIR "Matched" Bit Filter

Hz

dB

10

90

Ak

1000 fk

All the FIR filter coefficients were designed using either MathCAD or a program called PC-DSP by DSP Solutions.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 40

3.2.6 Frequency Error Filter

Unfortunately, the AFC(automatic frequency control) block could not use the output of the bit filter for locking on to the
incoming signal frequency. The problem is that the bit filter is too narrow and the AFC can lock onto either side of the
PSK31 idle signal which looks like two carriers spaced 15.625 Hz above and below the center frequency. The solution
though wasteful was to use a separate filter just for the frequency control that was wide enough that it cannot distinguish
between the PSK31 idle peaks. The response is only 6 dB down at 31.25 Hz so it spans both idle peaks.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
90
85

80
75

70
65

60
55

50
45

40
35

30
25

20
15

10
5

0
5

10
65 tap FIR Freq ErrorFilter

Hz

dB

10

90

Ak

1000 fk

3.2.7 AGC

The AGC is derived from the average signal magnitude using the scheme shown below. The I and Q signals are then
divided by the this AGC signal to help keep the average amplitude constant for the remainder of the processing.

Two different time constants are used depending on whether the signal is increasing in strength or decreasing.
The low pass filters are simple IIR stages with one delay element. They have the same response as an analog RC filter.
This type filter is useful for obtaining a very low cutoff frequency with little processor overhead. It can be implemented by
one line of code. (y = k1*y + k2*x;) The down side is the poor frequency response as can be seen in the following plots.

Gain
Control
SignalI + QQ(t)

IIR Fast
Attack
LP Filter

2 2
I(t)

IIR Slow
Decay
LP Filter

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 41

t()n .n
16

8000
xn 1

KF 200 KS 816

k1 1
1

KS
k2

1

KS
k3 1

1

KF
k4

1

KF
ysn

.k1 ysn 1
.k2 xn yfn

.k3 yfn 1
.k4 xn

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
it

ud
e

1

0

ys n

yfn

50 t()n

Fs
8000

16
T

1

Fs
fs 10 f .0.01 fs

f ..,0 f fs z()f e
()....j 2 f T

Hf()z
.k4 z

z k3
Af()f .20 log()Hf()z()f Hs()z

.k2 z

z k1
As()f .20 log()Hs()z()f

0 2 4 6 8 10
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
it

ud
e(

dB
)

0

40

As()f

Af()f

100 f

z-1k1

k2
Slow

k2in inout

z-1k3

out
Fast

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 42

3.2.8 Frequency Error Detection/Correction

Tuning in a PSK31 signal is done in stages. When the fnSetRxFrequency(…) function is called, the following sequence of
events takes place.

First, the FFT data is scanned within the capture range looking for the nearest signal peak. Normally this will get within a
few Hz. of the PSK31 signal.

The second stage of frequency searching begins using the following wide range AFC algorithm for about 2.5 seconds.

The wide range AFC is performed by calculating the slope of the frequency within the frequency error filter bandwidth and
essentially moving the NCO center frequency so that the frequency peak(if one exists) is at the center frequency. The
phase of the signal is the arctan(I(t)/Q(t)). Since frequency is the derivative of phase, the signal frequency is just the
derivative of the arctan function.
The following Mathcad simulation shows this relationship using two different frequency signals.

F1 1 F2 1.5
I1()t cos()...2 F1 t I2()t cos()...2 F2 t
Q1()t sin()...2 F1 t Q2()t sin()...2 F2 t
in1()t I1()t Q1()t in2()t I2()t Q2()t

0 0.2 0.4 0.6 0.8

2

2
Input Signals 1 and 2

Seconds

A
m

pl
it

ud
e in1()t

in2()t

t

1()t atan
Q1()t

I1()t
2()t atan

Q2()t

I2()t

0 0.05 0.1 0.15

1

2
Phase of Signals 1 and 2

Seconds

R
ad

ia
ns

1()t

2()t

t

1()t
d

d t
1()t 2()t

d

d t
2()t

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 43

0 0.05 0.1 0.15

5

10
Frequency of Signals 1 and 2

Seconds

R
ad

ia
ns

/s
ec 1()t

 2()t

t

From a dusty calculus book the following identity was obtained that gives the signal frequency as a function of the I and Q
signals and their derivatives without the use of the atan() function.

d

d t
atan

Q()t

I()t
= .1

1
Q()t

I()t

2

d

d t

Q()t

I()t
=

.I()t
d

d t
Q()t .Q()t

d

d t
I()t

I()t
2

Q()t
2

If the magnitude of the I/Q signal is adjusted to always be equal to one by the use of some AGC, then the denominator
can be ignored. This allows the implementation of the frequency detector to be implemented using two differentiators as
shown in the following:

d Q(t)
dt

Differentiator

Phase
Derived
Error
Signal

z-1

z-1

-

Q(t)

I(t)

z-1

z-1

-

d I(t)
dt

Differentiator

w(t)+

-

 if >
Limit

IIR
LP Filter

Frequency
Error
Signal

The IIR LP filter are the same type as used in the AGC section with different time constants.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 44

0 3 6 9 12 15

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
it

ud
e

0 0.5 1 1.5 2 2.5 3
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
it

ud
e(

dB
)

The transfer function for the differential frequency error block was obtained experimentally and is plotted below. It is
interesting to note the dip in the function around +/- 16 Hz on the idle(180 deg. shifting) signal. This is due to the two
frequency components of the idle signal. As long as the error signal doesn't change sign at this dip, the loop will still lock
correctly at the center frequency. The slope of the transfer functions change due to the presence of noise. This is due to
the AGC acting on the noise and reducing the actual signal level, which as was shown earlier, must remain relatively
constant in order for this frequency detector scheme to work. The noise level plotted here is right at the threshold of
signal detection, so is worst case.

Frequency Error vs Various Signal Conditions

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
Frequency Error

QPSK with Noise

QPSK No Noise

Idle No Noise

Idle with Noise

After the 2.5 second wide range AFC action a narrow and slow acting phase derived error signal is used. This phase
error signal is derived from the difference angle of the baseband signal (described later). This error signal is generated by
how far from the ideal 0 or phase position the signal is. If the frequency is off, then the phase difference of the PSK31
signal will be rotated from the ideal position and an error metric can be derived. This method can only be used for a very
narrow range of a few Hz and so is only useful once the main frequency error has dropped within 3 Hz in QPSK mode and
5 Hz in BPSK mode. This narrow mode AFC remains in operation until the user changes frequency again.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 45

3.2.9 Symbol Synchronization

The next level of synchronization is to find the center of each symbol in order to sample it at the optimum time. Several
schemes were tried with varying success. The classic early-late synchronizer was tried that integrates the signal energy
over part of the symbol time and then again with a small time delay. An error signal can be obtained that is fed back to
adjust a symbol clock. This works but had problems with noisy QPSK signals. Another method was tried using an
algorithm that selectively finds the peaks and valleys in each I and Q signal. This method worked OK but was
complicated. As a side benefit it could provide a good signal quality metric that worked well with very noisy signals.
However, the final method chosen was a simple method that seems to work quickly and well is shown by the following
diagram.

Energy
Peak
Selector

Symbol Period
Counter and index
Generator

Separate Filter For Each Sample
Time Within a Sample Period

Q(t)

I(t) 22I + Q
LP Filter (2)

LP Filter (1)

LP Filter (0)

LP Filter (15)

Bit Center
Sample Time

There are 16 samples per symbol at the 500 Hz. Sample rate. The energy in the input signal at each sample time is
individually filtered and stored in a filter array. At each symbol period of .032 seconds, the filter that has the most energy
is selected and the sample point associated with this sample is assumed to be the center of the data symbol.
The LP filters are again the simple IIR's with the following characteristics:

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1
IIR Step Response

Time (Sec)

A
m

pl
it

ud
e

0 1 2 3 4 5 6
40

30

20

10

0
IIR Frequency Response

Frequency(Hz.)

A
m

pl
it

ud
e(

dB
)

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 46

3.2.10 Squelch Function

To implement a squelch function, a measure of signal quality is needed. Visually, one can see how good the signal is by
noticing how the incoming signal vectors are distributed. A strong signal has most of the vectors tightly distributed around
the perpendicular axis. A noisy signal will have a wide distribution around the axis. By creating a histogram of the
incoming signal angles and looking at the average deviation that they take from the "ideal" 0, 90, -90, and 180 positions,
one can extract a signal proportional to signal quality. In order to use the same algorithm for BPSK and QPSK, only the
vectors around 0 and 180 degrees are analyzed.
First, the incoming signal difference angle must be found. The direct approach would be to just take the arctan(Q/I) and
subtract the previous arctan(Q/I) from it to get the difference angle.

-

Symbol
Time
Delay

+atan(Q/I)
I(t)

Q(t)

Difference
Angle

This method has a couple of problems. One is that if I(t) is zero things blow up. Second, there must be extra logic to do
the subtraction since the atan function doesn't return a nice 0 to 360 degree range. One must keep track of which
quadrant the vectors are in and subtract accordingly.
A different approach is used that creates a third vector whose angle is the difference angle but does not use the atan
function. This vector is created geometrically and so does not suffer from the discontinuities of the transcendental atan()
function. The atan function can now be used on this new vector to find it's angle directly. The atan function can still blow
up but only if both I and Q are zero which is less likely to occur.
To create this third difference vector one simply multiplies the current sample I,Q vector by the complex conjugate of the
previous I,Q vector.

Yk = .Ak e
.j k

Yk 1 = .Ak 1 e
.j k 1

Y k 1 = .Ak 1 e
.j k 1

Zk = .Yk Y k 1 = ..Ak Ak 1 e
j k k 1

Zk = Vector whose angle is the difference between the original vectors.

In terms of the complex coordinates I and Q,

Zk = .Yk Y k 1 = .Ik jQk Ik 1 jQk 1

= .Ik Ik 1
.Qk Qk 1 j .Qk Ik 1

.Ik Qk 1

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 47

In diagram form this implementation is show below.

Q(t) z-1

I(t) z-1

-

+

+ atan()
Difference
Angle

Q(t)

I(t)

+

In actuality, a 'C' function atan2(y,x) is used to obtain the angle. It returns a value from –PI to +PI. This still causes some
grief if one wants to create a histogram of angles around 0 and around PI(0 and 180deg). If one swaps I and Q, the affect
is to map 0 and 180 degrees to +/- 90 degrees. This translates the two ranges of interest(-PI/4 to PI/4 and 3PI/4 to
5PI/4), into the new ranges of PI/4 to 3PI/4, and 5PI/4 to 7PI/4.

Q

I
Pi

-Pi

0

atan2(Q/I)

I

2Pi0
Q

atan2(I/Q) + PI

Pi/4 to 3Pi/4
(range around
180 deg.)

5Pi/4 to 7Pi/4
(range around
0 deg.)

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 48

The basic signal quality scheme is then implemented as follows:

angle - Pi/2

Pi/4 to
3Pi/4

 if
range

5Pi/4 to
7Pi/4

Difference
Angle

angle - 3Pi/2

 if >
Limit

Force
Squelch
Off

IIR LP Filter

 if >
Limit

Force
Squelch
On

Signal
Quality
Output

|Abs |

|Abs |

"180 deg"
Counter

"0 deg"
Counter

++
Secondary
Frequency
Error

If the incoming difference angle is in the "ZERO" range, the absolute value of the angle and Pi/2 is found. If the incoming
difference angle is in the "180 degree" range, then the absolute value of the angle and 3Pi/2 is found. The two values are
added together and run through a low pass filter. This is a measure of how far away from the ideal the angle is, and is
used for squelch control and signal quality display.

Peter Martinez specified a feature into the PSK31 signal scheme in which each transmission should begin with a string of
at least 32 consecutive 180 degree shifting "idle" symbols and also each transmission should end with a string of 32
consecutive 0 degree non-shifting symbols(steady carrier). The reason was twofold. The beginning idle string gives the
decoders a chance at synchronization before any data is sent. It can also be used for squelch functions to indicate a
transmission is starting. The trailing carrier can also be used to deactivate the squelch since a string of 32 "0 degree"
symbols cannot occur during any data transmission.

Two counters are used to count consecutive idle characters and solid carrier symbols. If either reaches it's limit, it
bypasses the normal slow acting signal quality signal and forces the squelch either on or off. This gives a much quicker
acting squelch under good signal conditions.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 49

Signal Quality vs SNR

0

0.1

0.2

0.3

0.4

0 10 20 30 40

Relative SNR(dB)

Q
u

al
it

y QPSK
BPSK
Idle

Note how the QPSK signal with very high SNR still has a lower quality signal. This is due to ISI from the bit filter giving
the signal some phase jitter.

This block is also used to derive the secondary frequency error signal that is used along with the main differential
frequency error generator to lock onto the center frequency. The error signal is taken from the signal quality block before
the absolute value function and IIR filter. This signal then has the sign and magnitude information that can be used to
nudge the main mixer NCO toward the true center frequency. This error signal kicks in when the overall frequency error is
less than 3 Hz.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 50

3.2.11 IMD Measurement

One of the problems with PSK31 transmission is that most amateurs do not have the test equipment needed to measure
the distortion in their transmitted signals. A spectrum analyzer is required to accurately measure the distortion products
present in the transmitted signal. Currently one must rely on received signal reports to determine the quality of their
signals. One method used is to calculate the IMD(InterModulation Distortion) on the received signal. Although not the
ideal way, this method can be useful if one is aware of the limitations to this method.

3.2.11.1 Measurement Method

One method of IMD measurement involves using two non-harmonically related tones to modulate the transmitter and
observing the output for any spurious tones other than the two being used. If any non-linear amplification occurs in the
transmitter, spurious frequencies will be generated that are combinations of the original tones and multiples of the sum
and difference of the original tones.
If,
F1 = tone 1
F2 = tone 2
then the following frequencies can be generated:

+/-nF1 +/- mF2 where n and m are integers.

The most common and strongest distortion product is called the third order product and is the frequencies of
(2F1 – F2) and (2F2-F1).

If one examines the PSK31 idle signal, it can be shown that the constant phase change of 180 degrees and the cosine
shaped envelope of the signal generates two tones that are at the PSK31 center frequency +/- 15.625Hz. These tones
can be used to measure the IMD of a transmitter.
The following shows a PSK31 idle signal with a center frequency of 100Hz. The two tones are at 100+/- 15.625Hz
or 84.375Hz and 115.625Hz.

0 20 40 60 80 100 120 140 160 180 200
90

80

70

60

50

40

30

20

10

0

10
Pure PSK31 Idle Signal

Hz

P
ow

er

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 51

The third order product frequencies are (2F1 – F2) and (2F2-F1) or 53.125Hz and 146.875Hz. The following shows a
PSK31 idle signal with some 3rd (and 5th) order IMD.
By measuring the power difference between the original tones and the 3rd order IMD tones, one can provide a
measurement as to how much distortion is on the signal. In this case, the IMD is –40dB since the original tones are at
0dB and the 3rd order tones are at –40dB.

0 20 40 60 80 100 120 140 160 180 200
90

80

70

60

50

40

30

20

10

0

10
-40dB IMD PSK31 Idle Signal

Hz

P
ow

er

This works well with a strong received signal but look what happens if the signal is weak in the presence of noise.

0 20 40 60 80 100 120 140 160 180 200
90

80

70

60

50

40

30

20

10

0

10
-40dB IMD PSK31 Idle Signal in Noise

Hz

P
ow

er

Note that if one measures the signal level at the 3rd order frequencies, then erroneous results are obtained because the
noise level is higher than the distortion product. An IMD reading of –20dB will be obtained even thought the signal is
actually –40dB.
This is why it is important that the received signal be well above the noise floor before trying to obtain an IMD reading.
Another factor is the HF propagation effects that also introduce errors into this measurement method.

The PSKCore algorithm samples the original PSK31 idle tones, the 3rd order distortion tones, as well as the noise floor
level. If the noise floor level is higher than the IMD tone then the IMD measurement is flagged as suspect.(See
description of the MSG_IMDRDY message)

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 52

3.2.11.2 Goertzel Filter

The PSKCore dll uses Goertzel tone filters to sample the incoming signal and measure the IMD present. Goertzel filters
are essentially IIR filters that calculate discrete Fourier transform frequencies. If a small number of frequencies are
needed, this is much more efficient than calculating the entire fft. These filters are commonly used in DTMF tone
detection since only 8 tones are required. Another advantage of the Goertzel algorithm is that only part of the filter needs
to be calculated every sample time so a further savings is obtained.
A block diagram of the modified Goertzel algoritm is shown below. The left side is calculated every sample time while the
right side energy calculation only needs to be done every N samples where N is the Goertzel filter length. The constant
"COEF" and value N determine the frequency and bandwidth of the tone detector.

COEF = 2cos(2k/N) where k is the nearest integer that satisfies the equation:

k = N fi/fs where N is the filter length, fi is the desired filter frequency, and fs is the sample frequency.

+
I(t)

+

()

z-1COEF

z-1

-

COEF

+

()
2

2

Energy Out

For the PSKCore dll, the following parameters are used for the IMD measuring filters:
N = 288
fs = 500Hz
The signal is measured after the complex mixer so the signal center frequency is zero.
f0 = 15.625 Hz this is the PSK31 idle tone frequency
f1 = 31.25 Hz this is the frequency for measuring the noise floor
f2 = 46.875 Hz this is the 3rd order IMD frequency

k0 = Nf0/fS = 9 COEF_0 = 2cos(2k0/N) = 1.96
k1 = Nf1/fS = 18 COEF_1 = 2cos(2k1/N) = 1.8477
k2 = Nf2/fS = 27 COEF_2 = 2cos(2k2/N) = 1.663

The basic algorithm is implemented as follows:
temp = I1;
I1 = I1*COEF-I2+samp;
I2 = temp;
if(++NCount >= N)
{

NCount = 0;
Energy = I1*I1 + I2*I2 - I1*I2*COEF;
I1 = I2 = 0.0;

}

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 53

If a constant string of PSK31 idle symbols has been received then the following code is executed to calculate the IMD of
the incoming signal:
//
// This routine calculates the energy in the frequency bands of
// carrier=F0(15.625), noise=F1(31.25), and
// 3rd order product=F2(46.875)
//
BOOL CCalcIMD::CalcIMDValue(INT &imdval)
{

m_Snr = 10.0*log10(m_Energy[0]/m_Energy[1]);
m_Imd = 10.0*log10(m_Energy[2]/m_Energy[0]);
imdval = (INT)m_Imd;
if(m_Snr > (-m_Imd+6))

return TRUE;
else

return FALSE;
}

3.2.12 Symbol Decoding

The next step is to convert the I and Q signals back into the four possible symbols (two for BPSK). PSKCore finds the
difference angle as described in the squelch section and find the nearest 0, 90, -90, or 180 degree position and that is the
symbol to use in the decoder.

3.2.12.1 BPSK Decoder

Decoding the BPSK signal is fairly straight forward. If the signal phase difference angle is less than 90 degrees then the
bit is a One. If it is greater than 90 degrees than the bit is a Zero. This bit steam is shifted into a shift register until an
inter-character marker of 2 or more Zeros is found. The shift register value is then used as an index into a reverse
Varicode table to obtain the original character. There is no error correcting with this mode.

3.2.12.2 Soft Viterbi Decoder

The Viterbi Decoder tries to reconstruct the original transmitted signal by looking at the sequence of received signals and
comparing it to all the possible transmitted sequences. The sequence(or path) that has the best match is chosen to
provide the best guess at a current data bit.
The process is similar to being lost in your car and you try to find out where you are on a map by observing how far you
have traveled, which way you have turned, etc. By looking at all possible roads on the map with the same turns and
distances that you've taken, you pick the roads that best match your route and conclude where you are. Viterbi added a
simplifying step where if two paths end up at the same intersection, you pick the path with the best match at that point,
and eliminate the other. The paths that are left(survivors) are the only ones left in contention for future calculations.
The details of the Viterbi algorithm can be found in most communications books so it won't be discussed in much detail
here.

PSKCore uses a modified implementation of a Viterbi decoder described in an article by Peter Martinez. Soft decision
capability was added and the path metrics converted from integer to floating point representation.
Recall how the transmitted data is encoded using the following state machine. Note that 4 memory stages plus the current
data bit is used to form the output symbol. Every input bit causes the state machine to transition to one of 16 possible
states. The 2 bit output symbol is derived from the state and the input bit.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 54

s0

s12 bit
Symbol x3 x2x4 x1 Data bit IN

The Viterbi decoder uses the same encoder to try all possible transmitted combinations and calculate an error metric
based on how "far away" from each possibility the received symbol is.
The algorithm is executed at every symbol period with the phase angle as input into the decoder routine. The algorithm
begins by filling two temporary 32 element arrays in the following manner. The index into the arrays is all possibilities that
the constraint length 5 encoder can have.(25=32). The distance(how far away from +90,-90,0,or 180) is calculated for all
possibilities.
For each possible index, a new path distance is computed by adding the existing survivor path distance and the new
symbol's error distance. A second array (bitestimates[]) gets the new bit pattern estimate from the existing survivor paths
plus the new bit combination being examined. The minimum of all the path distances is kept for use later normalization.

///
// Soft-decision Viterbi decoder function.
///
BOOL CPSKDet::ViterbiDecode(double newangle)
{
double pathdist[32];
double min;
INT bitestimates[32];
INT ones;
INT i;
const double* pAngleTbl;

min = 1.0e100; // make sure can find a minimum value
if(newangle >= PI2/2) //deal with ambiguity at +/- 2PI

pAngleTbl = ANGLE_TBL2; // by using two different tables
else

pAngleTbl = ANGLE_TBL1;
for(i = 0; i < 32; i++) // calculate all possible distances
{ //lsb of 'i' is newest bit estimate

pathdist[i] = m_SurvivorStates[i / 2].Pathdistance +
fabs(newangle - pAngleTbl[ConvolutionCodeTable[i]]);

if(pathdist[i] < min) // keep track of minimum distance
min = pathdist[i];

// shift in newest bit estimates
bitestimates[i] = ((m_SurvivorStates[i / 2].BitEstimates) << 1) + (i & 1);

}
}
The next step is to index through all the path distances and eliminate all the paths that reached the same state but have
higher path distances. The shortest path is copied into the survivor state array along with the associated bit pattern
estimate. Note also that the minimum value calculated earlier is subtracted from the total path distance before being
saved into the survivor array. This keeps the value from growing over time and remain bounded.

for(i = 0; i < 16; i++) //compare path lengths with the same end state
// and keep only the smallest path in m_SurvivorStates[].

{
if(pathdist[i] < pathdist[16 + i])
{

m_SurvivorStates[i].Pathdistance = pathdist[i] - min;
m_SurvivorStates[i].BitEstimates = bitestimates[i];

}
else
{

m_SurvivorStates[i].Pathdistance = pathdist[16 + i] - min;
m_SurvivorStates[i].BitEstimates = bitestimates[16 + i];

}
}

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 55

Finally the survivor state array bit estimates are examined 20 bits back in time, and the majority of ones or zeros is used
as the best estimate for the transmitted bit. If there is a tie, a fair "coin toss" is used to guess at the bit. It has been shown
that calculating over 4 or 5 times the constraint length does not significantly improve performance of the Viterbi decoder.

ones = 0;
for(i = 0; i < 16; i++) // find if more ones than zeros at bit 20 position

ones += (m_SurvivorStates[i].BitEstimates&(1L << 20));
if(ones == (8L << 20))

return (rand() & 0x1000); //if a tie then guess
else

return(ones > (8L << 20)); //else return most likely bit value

This bit steam is shifted into a shift register until an inter-character marker of 2 or more Zeros is found. The shift register
value is then used as an index into a reverse Varicode table to obtain the original character.

PSKCore Interface Specification And Technical Description. Ver 1.41

Sept 23, 2008 Moe Wheatley, AE4JY Page 56

4. Further References and Acknowledgments

The following are some references used in this document and can be used for further reading on the subject.

 Peter Martinez G3PLX. "PSK31: A new radio-teletype mode with a traditional philosophy"

 Peter Martinez G3PLX. "PSK31 Fundamentals"

 MathCad ver.6.0. MathSoft 101 Main St.,Cambridge, MA 02142

 Marvin E. Frerking. "Digital Signal Processing in Communication Systems"p.444. ISBN0-442-01616-6

 George B. Thomas, Jr. "Calculus and Analytic Geometry" p.238

 W.T. Webb and L. Hanzo "Modern Quadrature Amplitude Modulation" p.367 ISBN0-7273-1701-6

 Yuri Okunev. "Phase and Phase Difference Modulation in Digital Communications" p.173-216
ISBN 0-89006-937-9

 Bernard Sklar. "Digital Communications Fundamentals and Applications" ISBN 0-13-211939-0

 "C. Britton Rorabaugh. "Error Coding Cookbook". P. 127 ISBN 0-07-911720-1

 Tom McDermott, N5EG. "Wireless Digital Communications: Design and Theory" ISBN 0-9644707-2-1

 Peter Martinez G3PLX. "Description of the Half-Rate QPSK code proposed for the QPSK/FEC Extension to PSK31"

I would like to thank Bob, K4CY for suggestions and helping find bugs in the DLL and also Julian, G4ILO for providing the
Delphi function prototyping. Also Dave, AA6YQ for adding PSK125, a few more interface functions, and porting the code
to the latest Visual Studio format.

